IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p144-152.html
   My bibliography  Save this article

Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation

Author

Listed:
  • Pérez-Díaz, J.I.
  • Millán, R.
  • García, D.
  • Guisández, I.
  • Wilhelmi, J.R.

Abstract

Environmental constraints imposed on hydropower operation are usually given in the form of minimum environmental flows and maximum and minimum rates of change of flows, or ramp rates. One solution proposed to mitigate the environmental impact caused by the flows discharged by a hydropower plant while reducing the economic impact of the above-mentioned constraints consists in building a re-regulation reservoir, or afterbay, downstream of the power plant. Adding pumping capability between the re-regulation reservoir and the main one could contribute both to reducing the size of the re-regulation reservoir, with the consequent environmental improvement, and to improving the economic feasibility of the project, always fulfilling the environmental constraints imposed to hydropower operation. The objective of this paper is studying the contribution of a re-regulation reservoir to fulfilling the environmental constraints while reducing the economic impact of said constraints. For that purpose, a revenue-driven optimization model based on mixed integer linear programming is used. Additionally, the advantages of adding pumping capability are analysed. In order to illustrate the applicability of the methodology, a case study based on a real hydropower plant is presented.

Suggested Citation

  • Pérez-Díaz, J.I. & Millán, R. & García, D. & Guisández, I. & Wilhelmi, J.R., 2012. "Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation," Energy, Elsevier, vol. 48(1), pages 144-152.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:144-152
    DOI: 10.1016/j.energy.2012.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    2. Matthew J. Kotchen & Michael R. Moore & Frank Lupi & Edward S. Rutherford, 2006. "Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing in Michigan," Land Economics, University of Wisconsin Press, vol. 82(3), pages 384-403.
    3. Niu, Shilei & Insley, Margaret, 2013. "On the economics of ramping rate restrictions at hydro power plants: Balancing profitability and environmental costs," Energy Economics, Elsevier, vol. 39(C), pages 39-52.
    4. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    5. David A. Harpman, 1999. "Assessing the Short-Run Economic Cost of Environmental Constraints on Hydropower Operations at Glen Canyon Dam," Land Economics, University of Wisconsin Press, vol. 75(3), pages 390-401.
    6. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Hydro energy systems management in Portugal: Profit-based evaluation of a mixed-integer nonlinear approach," Energy, Elsevier, vol. 36(1), pages 500-507.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    2. Soroudi, Alireza, 2013. "Robust optimization based self scheduling of hydro-thermal Genco in smart grids," Energy, Elsevier, vol. 61(C), pages 262-271.
    3. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    4. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer," Energy, Elsevier, vol. 81(C), pages 245-254.
    5. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    6. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    7. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    8. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    9. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    10. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kern, Jordan D. & Characklis, Gregory W., 2017. "Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams," Energy Economics, Elsevier, vol. 61(C), pages 340-350.
    2. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    3. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    4. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    5. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    6. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    7. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    8. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    9. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    10. Petras Punys & Antanas Dumbrauskas & Egidijus Kasiulis & Gitana Vyčienė & Linas Šilinis, 2015. "Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations," Energies, MDPI, vol. 8(7), pages 1-24, July.
    11. Catalão, J.P.S. & Pousinho, H.M.I. & Contreras, J., 2012. "Optimal hydro scheduling and offering strategies considering price uncertainty and risk management," Energy, Elsevier, vol. 37(1), pages 237-244.
    12. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2016. "Approximate formulae for the assessment of the long-term economic impact of environmental constraints on hydropeaking," Energy, Elsevier, vol. 112(C), pages 629-641.
    13. Niu, Shilei & Insley, Margaret, 2013. "On the economics of ramping rate restrictions at hydro power plants: Balancing profitability and environmental costs," Energy Economics, Elsevier, vol. 39(C), pages 39-52.
    14. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    15. Ak, Mumtaz & Kentel, Elcin & Savasaneril, Secil, 2017. "Operating policies for energy generation and revenue management in single-reservoir hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1253-1261.
    16. Guilfoos, Todd & Walsh, Jason, 2023. "A hedonic study of New England dam removals," Ecological Economics, Elsevier, vol. 203(C).
    17. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    18. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    19. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    20. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:144-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.