IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p77-82.html
   My bibliography  Save this article

Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea

Author

Listed:
  • Aikins, Kojo Atta
  • Choi, Jong Min

Abstract

Heat pumps, as a process recirculating environmental heat back into useful heat production, fit the environmental requirements of present global policy. They are very useful tools to reduce the need of fossil fuels in space heating and cooling. The government of the Republic of Korea has promoted the distribution of heat pump systems that apply geothermal energy, and has adopted regulation to prevent the use of low efficiency heat pump units. Only heat pump units certified by the government can be used in ground source heat pump (GSHP) systems. Certified heat pump units in the Republic of Korea were analyzed and discussed in this paper. All certified products had cooling capacities less than 280 kW (80 RT). Most of the cooling COPs (Coefficient of Performance)s were found to be superior to heating COPs for GSHP units in the Republic of Korea. To save energy, correspond to environmental regulations and reduce the installation cost of applying GSHP systems, it is suggested that the certification standard concerning underground circulation flow rate should be revised. In addition, there is a need for the revision of the certification standards to include floor heating in order to be able to apply GSHP systems for a variety of purposes.

Suggested Citation

  • Aikins, Kojo Atta & Choi, Jong Min, 2012. "Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea," Energy, Elsevier, vol. 47(1), pages 77-82.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:77-82
    DOI: 10.1016/j.energy.2012.05.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.05.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    2. Lee, Jin-Yong, 2009. "Current status of ground source heat pumps in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1560-1568, August.
    3. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    4. Esen, Hikmet & Inalli, Mustafa & Sengur, Abdulkadir & Esen, Mehmet, 2008. "Modeling a ground-coupled heat pump system by a support vector machine," Renewable Energy, Elsevier, vol. 33(8), pages 1814-1823.
    5. Pulat, Erhan & Coskun, Salih & Unlu, Kursat & Yamankaradeniz, Nurettin, 2009. "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey," Energy, Elsevier, vol. 34(9), pages 1284-1295.
    6. Wood, Christopher J. & Liu, Hao & Riffat, Saffa B., 2010. "An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building," Energy, Elsevier, vol. 35(12), pages 4932-4940.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    2. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    3. Lyu, Weihua & Li, Xianting & Yan, Shuai & Jiang, Sihang, 2020. "Utilizing shallow geothermal energy to develop an energy efficient HVAC system," Renewable Energy, Elsevier, vol. 147(P1), pages 672-682.
    4. Song, Jeonghun & Song, Seung Jin, 2020. "A framework for analyzing city-wide impact of building-integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    5. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    6. Yang, Wei, 2013. "Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China," Energy, Elsevier, vol. 59(C), pages 334-339.
    7. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    8. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    10. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    11. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    12. Liu, Guoqing & Zhou, Zhifang & Li, Zhaofeng & Zhou, Yanzhang, 2014. "Analysis and experimental study on thermal dispersion effect of small scale saturated porous aquifer," Energy, Elsevier, vol. 67(C), pages 411-421.
    13. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    14. Kofi Owura Amoabeng & Kwang Ho Lee & Jong Min Choi, 2019. "Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System," Energies, MDPI, vol. 12(23), pages 1-22, December.
    15. Elisa Moretti & Emanuele Bonamente & Cinzia Buratti & Franco Cotana, 2013. "Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings," Energies, MDPI, vol. 6(10), pages 1-16, October.
    16. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    17. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    18. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    19. Tonni Agustiono Kurniawan & Xue Liang & Elizabeth O’Callaghan & Huihwang Goh & Mohd Hafiz Dzarfan Othman & Ram Avtar & Tutuk Djoko Kusworo, 2022. "Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    20. Cho, Honghyun & Choi, Jong Min, 2014. "The quantitative evaluation of design parameter's effects on a ground source heat pump system," Renewable Energy, Elsevier, vol. 65(C), pages 2-6.
    21. Zhongchao Zhao & Rendong Shen & Weixian Feng & Yong Zhang & Yanrui Zhang, 2018. "Soil Thermal Balance Analysis for a Ground Source Heat Pump System in a Hot-Summer and Cold-Winter Region," Energies, MDPI, vol. 11(5), pages 1-13, May.
    22. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    23. Song, Jeonghun & Song, Seung Jin & Oh, Si-Deok & Yoo, Yungpil, 2015. "Evaluation of potential fossil fuel conservation by the renewable heat obligation in Korea," Renewable Energy, Elsevier, vol. 79(C), pages 140-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    2. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    3. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    4. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    5. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    6. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    7. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    8. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    9. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    10. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    11. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    12. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    13. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    14. Kwon, Ohkyung & Bae, KyungJin & Park, Chasik, 2014. "Cooling characteristics of ground source heat pump with heat exchange methods," Renewable Energy, Elsevier, vol. 71(C), pages 651-657.
    15. Man, Yi & Yang, Hongxing & Wang, Jinggang & Fang, Zhaohong, 2012. "In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone," Applied Energy, Elsevier, vol. 97(C), pages 913-920.
    16. Shang, Yan & Dong, Ming & Li, Sufen, 2014. "Intermittent experimental study of a vertical ground source heat pump system," Applied Energy, Elsevier, vol. 136(C), pages 628-635.
    17. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    18. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    19. Bozzoli, F. & Pagliarini, G. & Rainieri, S. & Schiavi, L., 2011. "Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data," Energy, Elsevier, vol. 36(2), pages 839-846.
    20. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:77-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.