IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i8p1814-1823.html
   My bibliography  Save this article

Modeling a ground-coupled heat pump system by a support vector machine

Author

Listed:
  • Esen, Hikmet
  • Inalli, Mustafa
  • Sengur, Abdulkadir
  • Esen, Mehmet

Abstract

This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R2) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters.

Suggested Citation

  • Esen, Hikmet & Inalli, Mustafa & Sengur, Abdulkadir & Esen, Mehmet, 2008. "Modeling a ground-coupled heat pump system by a support vector machine," Renewable Energy, Elsevier, vol. 33(8), pages 1814-1823.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1814-1823
    DOI: 10.1016/j.renene.2007.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    2. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia, Yen Yee & Lee, Lam Hong & Shafiabady, Niusha & Isa, Dino, 2015. "A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine," Applied Energy, Elsevier, vol. 137(C), pages 588-602.
    2. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework," Applied Energy, Elsevier, vol. 206(C), pages 1088-1101.
    3. Hu, Bin & Li, Yaoyu & Mu, Baojie & Wang, Shaojie & Seem, John E. & Cao, Feng, 2016. "Extremum seeking control for efficient operation of hybrid ground source heat pump system," Renewable Energy, Elsevier, vol. 86(C), pages 332-346.
    4. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    6. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    7. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    8. Shamshirband, Shahaboddin & Petković, Dalibor & Anuar, Nor Badrul & Gani, Abdullah, 2014. "Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 270-276.
    9. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    10. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    11. Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
    12. Aikins, Kojo Atta & Choi, Jong Min, 2012. "Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea," Energy, Elsevier, vol. 47(1), pages 77-82.
    13. Taghavifar, Hamid & Mardani, Aref, 2014. "A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles," Energy, Elsevier, vol. 66(C), pages 569-576.
    14. Mladenović, Igor & Sokolov-Mladenović, Svetlana & Milovančević, Milos & Marković, Dušan & Simeunović, Nenad, 2016. "Management and estimation of thermal comfort, carbon dioxide emission and economic growth by support vector machine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 466-476.
    15. Razavi, M. & Dehghani-sanij, A.R. & Khani, M.R. & Dehghani, M.R., 2015. "Comparing meshless local Petrov–Galerkin and artificial neural networks methods for modeling heat transfer in cisterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 521-529.
    16. Mojumder, Juwel Chandra & Ong, Hwai Chyuan & Chong, Wen Tong & Izadyar, Nima & Shamshirband, Shahaboddin, 2017. "The intelligent forecasting of the performances in PV/T collectors based on soft computing method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1366-1378.
    17. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    18. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    19. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    20. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    21. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    22. Dong, Rentao & Xu, Jiuping & Lin, Bo, 2017. "ROI-based study on impact factors of distributed PV projects by LSSVM-PSO," Energy, Elsevier, vol. 124(C), pages 336-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    2. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    3. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    4. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    6. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    7. Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
    8. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    9. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    10. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    11. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
    12. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    13. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
    14. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    15. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    16. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    19. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
    20. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1814-1823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.