IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p634-643.html
   My bibliography  Save this article

Allocation of waste cost in thermoeconomic analysis

Author

Listed:
  • Agudelo, Andrés
  • Valero, Antonio
  • Torres, César

Abstract

In any energy system there are unwanted residual output flows that are necessary to obtain final products. These are known as waste, and represent an exergy loss that has an inherent cost that must be “charged” to the useful products of the system. Calculation of production costs including waste depends on the allocation of these to productive components. The right way to allocate waste is by identifying the formation process of their cost, since every productive component must be charged only by the part of a waste cost it contributed to. Waste cost allocation is done by means of so called waste cost distribution ratios. Nevertheless, there is no a definitive way to determine these ratios. In this work we propose an improved definition of waste cost distribution ratios, based on the premise that waste must be allocated to the productive units that generated their cost. Two energy systems are used as case studies to demonstrate the methodology. It was found that the allocation of waste is significantly improved with the new methodology. Quantitative and qualitative results are satisfactory, since the cost formation process of waste is identified, allowing to perform an improved thermoeconomic analysis.

Suggested Citation

  • Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:634-643
    DOI: 10.1016/j.energy.2012.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Avishek & Tierney, Michael. J. & Thorpe, Roger. N., 2012. "Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages," Energy, Elsevier, vol. 43(1), pages 477-488.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    4. Sanaye, Sepehr & Fardad, Abbasali & Mostakhdemi, Masoud, 2011. "Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling," Energy, Elsevier, vol. 36(2), pages 1057-1067.
    5. Sayyaadi, Hoseyn & Babaie, Meisam & Farmani, Mohammad Reza, 2011. "Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system," Energy, Elsevier, vol. 36(8), pages 4777-4789.
    6. González, A. & Sala, J.M. & Flores, I. & López, L.M., 2003. "Application of thermoeconomics to the allocation of environmental loads in the life cycle assessment of cogeneration plants," Energy, Elsevier, vol. 28(6), pages 557-574.
    7. Seyyedi, Seyyed Masoud & Ajam, Hossein & Farahat, Said, 2010. "A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems," Energy, Elsevier, vol. 35(8), pages 3474-3482.
    8. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    9. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    10. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    11. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    12. Frangopoulos, Christos A., 1987. "Thermo-economic functional analysis and optimization," Energy, Elsevier, vol. 12(7), pages 563-571.
    13. Mert, Mehmet Selçuk & Dilmaç, Ömer Faruk & Özkan, Semra & Karaca, Fatma & Bolat, Esen, 2012. "Exergoeconomic analysis of a cogeneration plant in an iron and steel factory," Energy, Elsevier, vol. 46(1), pages 78-84.
    14. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    15. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    16. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    17. Torres, C. & Valero, A. & Rangel, V. & Zaleta, A., 2008. "On the cost formation process of the residues," Energy, Elsevier, vol. 33(2), pages 144-152.
    18. Campos-Celador, Álvaro & Pérez-Iribarren, Estibaliz & Sala, José María & del Portillo-Valdés, Luis Alfonso, 2012. "Thermoeconomic analysis of a micro-CHP installation in a tertiary sector building through dynamic simulation," Energy, Elsevier, vol. 45(1), pages 228-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    2. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    3. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    5. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    6. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    7. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    8. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    9. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    10. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    11. Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
    12. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
    13. Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    2. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    3. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    4. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    5. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    6. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    8. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    9. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J., 2013. "Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator," Energy, Elsevier, vol. 52(C), pages 44-54.
    10. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    11. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    12. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    13. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    14. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    15. Silva, J.A.M. & Oliveira, S., 2014. "An exergy-based approach to determine production cost and CO2 allocation in refineries," Energy, Elsevier, vol. 67(C), pages 607-616.
    16. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    17. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    18. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    19. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    20. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:634-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.