IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i4p1741-1753.html
   My bibliography  Save this article

Assessment of energy savings from the revised building energy code of Thailand

Author

Listed:
  • Chirarattananon, S.
  • Chaiwiwatworakul, P.
  • Hien, V.D.
  • Rakkwamsuk, P.
  • Kubaha, K.

Abstract

The government of Thailand legislated an Energy Conservation Promotion Act (ECP Act) in 1992 and set bye-laws that identify designated buildings (DBs) and detail mandatory requirements for energy conservation for DBs in 1995. An Energy Conservation Promotion Fund (ENCON Fund) was also created to fund energy audits on 1900 DBs. Recently the requirements and procedures for energy conservation in buildings have been revised where system performance requirements for building envelope, lighting, air-conditioning, and hot water generation are adopted. Moreover, the new building energy code (BEC) distinguishes different categories of DBs, provides credit for use of solar energy, and introduces a new option of whole building energy compliance. The authors develop building models from data obtained from energy audit reports and use them to estimate savings on energy and peak demand from future new buildings using forecasted energy and peak demand data from the Load Forecast Subcommittee, a panel tasked to forecast future electric load of Thailand. From a modest level of energy saving in the first year that the code is expected to be enforced, the level of saving rise to over 10% and 20% annually of requirement of target buildings in 6 and 12 years respectively.

Suggested Citation

  • Chirarattananon, S. & Chaiwiwatworakul, P. & Hien, V.D. & Rakkwamsuk, P. & Kubaha, K., 2010. "Assessment of energy savings from the revised building energy code of Thailand," Energy, Elsevier, vol. 35(4), pages 1741-1753.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1741-1753
    DOI: 10.1016/j.energy.2009.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, S.K. & Lee, Y.K., 1988. "A simplified overall thermal transfer value equation for building envelopes," Energy, Elsevier, vol. 13(8), pages 657-670.
    2. Radhi, H., 2009. "Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?," Energy, Elsevier, vol. 34(2), pages 205-215.
    3. Lee, W. L. & Yik, F. W. H., 2002. "Regulatory and voluntary approaches for enhancing energy efficiencies of buildings in Hong Kong," Applied Energy, Elsevier, vol. 71(4), pages 251-274, April.
    4. Chirarattananon, Surapong & Limmeechokchai, Bundit, 1994. "A new building energy-efficiency law in Thailand: Impact on new buildings," Energy, Elsevier, vol. 19(2), pages 269-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    2. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    3. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    4. Guo, Fei & Akenji, Lewis & Schroeder, Patrick & Bengtsson, Magnus, 2018. "Static analysis of technical and economic energy-saving potential in the residential sector of Xiamen city," Energy, Elsevier, vol. 142(C), pages 373-383.
    5. Shimada, Yutaro & Tokimatsu, Koji & Asawa, Takashi & Uchida, Youhei & Tomigashi, Akira & Kurishima, Hideaki, 2021. "Subsurface utilization as a heat sink for large-scale ground source heat pump: Case study in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 180(C), pages 966-979.
    6. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    7. Khaled Bawaneh & Farnaz Ghazi Nezami & Md. Rasheduzzaman & Brad Deken, 2019. "Energy Consumption Analysis and Characterization of Healthcare Facilities in the United States," Energies, MDPI, vol. 12(19), pages 1-20, October.
    8. Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
    9. Franzitta, Vincenzo & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2011. "Toward a European Eco-label brand for residential buildings: Holistic or by-components approaches?," Energy, Elsevier, vol. 36(4), pages 1884-1892.
    10. Hye Gi Kim & Hyun Jun Kim & Chae Hwan Jeon & Myeong Won Chae & Young Hum Cho & Sun Sook Kim, 2020. "Analysis of Energy Saving Effect and Cost Efficiency of ECMs to Upgrade the Building Energy Code," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Brown, Lawrence H. & Blanchard, Ian E., 2012. "Energy, emissions and emergency medical services: Policy matters," Energy Policy, Elsevier, vol. 46(C), pages 585-593.
    12. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    2. Chan, Edwin H.W. & Qian, Queena K. & Lam, Patrick T.I., 2009. "The market for green building in developed Asian cities--the perspectives of building designers," Energy Policy, Elsevier, vol. 37(8), pages 3061-3070, August.
    3. Lee, Junghun & Kim, Jeonggook & Song, Doosam & Kim, Jonghun & Jang, Cheolyong, 2017. "Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1081-1088.
    4. Franzitta, Vincenzo & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2011. "Toward a European Eco-label brand for residential buildings: Holistic or by-components approaches?," Energy, Elsevier, vol. 36(4), pages 1884-1892.
    5. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    6. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    7. Limmeechokchai, B. & Chungpaibulpatana, S., 2001. "Application of cool storage air-conditioning in the commercial sector: an integrated resource planning approach for power capacity expansion planning and emission reduction," Applied Energy, Elsevier, vol. 68(3), pages 289-300, March.
    8. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    9. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    10. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    11. Yik, F.W.H & Wan, K.S.Y, 2005. "An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings," Energy, Elsevier, vol. 30(1), pages 41-71.
    12. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    13. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    14. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    15. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    16. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    17. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    18. Pan, Wei & Garmston, Helen, 2012. "Building regulations in energy efficiency: Compliance in England and Wales," Energy Policy, Elsevier, vol. 45(C), pages 594-605.
    19. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    20. Malmqvist, Tove & Glaumann, Mauritz & Svenfelt, Åsa & Carlson, Per-Olof & Erlandsson, Martin & Andersson, Johnny & Wintzell, Helene & Finnveden, Göran & Lindholm, Torbjörn & Malmström, Tor-Göran, 2011. "A Swedish environmental rating tool for buildings," Energy, Elsevier, vol. 36(4), pages 1893-1899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1741-1753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.