IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i4p1893-1899.html
   My bibliography  Save this article

A Swedish environmental rating tool for buildings

Author

Listed:
  • Malmqvist, Tove
  • Glaumann, Mauritz
  • Svenfelt, Åsa
  • Carlson, Per-Olof
  • Erlandsson, Martin
  • Andersson, Johnny
  • Wintzell, Helene
  • Finnveden, Göran
  • Lindholm, Torbjörn
  • Malmström, Tor-Göran

Abstract

In 2003, a joint effort between the Swedish government, a number of companies in the building and construction sectors, some municipalities, insurance companies and banks set a target that by 2009, all new buildings and 30% of existing Swedish buildings should be rated using a voluntary environmental rating tool. In a major research programme finished in 2008, a tool was developed to be used in this context. The tool covers three assessment areas: Energy, Indoor environment and Material & Chemicals. These areas are split into 11 aspects with one or a few indicators. Rating criteria are specified for each indicator, stipulating requirements for a rating Gold, Silver, Bronze and Rated. Indicator results can then be aggregated to aspect, area and a single rating for building level for enhanced result communication. The tool builds on previous experiences regarding environmental building rating tools and therefore includes some special characteristics which aim to tackle some of the criticism directed towards the first generation of such tools. At the time of writing, the first buildings have received official ratings and an independent stakeholder group is promoting broader implementation of the tool.

Suggested Citation

  • Malmqvist, Tove & Glaumann, Mauritz & Svenfelt, Åsa & Carlson, Per-Olof & Erlandsson, Martin & Andersson, Johnny & Wintzell, Helene & Finnveden, Göran & Lindholm, Torbjörn & Malmström, Tor-Göran, 2011. "A Swedish environmental rating tool for buildings," Energy, Elsevier, vol. 36(4), pages 1893-1899.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:4:p:1893-1899
    DOI: 10.1016/j.energy.2010.08.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.08.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radhi, H., 2009. "Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?," Energy, Elsevier, vol. 34(2), pages 205-215.
    2. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Zhang, Xutao & Gao, Yuefen, 2009. "Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment," Energy, Elsevier, vol. 34(11), pages 1870-1879.
    3. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    4. Dias, W.P.S. & Pooliyadda, S.P., 2004. "Quality based energy contents and carbon coefficients for building materials: A systems approach," Energy, Elsevier, vol. 29(4), pages 561-580.
    5. Chen, T.Y & Burnett, J & Chau, C.K, 2001. "Analysis of embodied energy use in the residential building of Hong Kong," Energy, Elsevier, vol. 26(4), pages 323-340.
    6. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.
    7. Lee, Wen-Shing, 2010. "Benchmarking the energy performance for cooling purposes in buildings using a novel index-total performance of energy for cooling purposes," Energy, Elsevier, vol. 35(1), pages 50-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pernilla Gluch & Stina Månsson, 2021. "Taking Lead for Sustainability: Environmental Managers as Institutional Entrepreneurs," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    2. Chandratilake, S.R. & Dias, W.P.S., 2015. "Ratio based indicators and continuous score functions for better assessment of building sustainability," Energy, Elsevier, vol. 83(C), pages 137-143.
    3. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    4. Kamaruzzaman, Syahrul Nizam & Lou, Eric Choen Weng & Wong, Phui Fung & Edwards, Rodger & Hamzah, Noraini & Ghani, Mohd Khairolden, 2019. "Development of a non-domestic building refurbishment scheme for Malaysia: A Delphi approach," Energy, Elsevier, vol. 167(C), pages 804-818.
    5. Liane Thuvander & Paula Femenías & Kristina Mjörnell & Pär Meiling, 2012. "Unveiling the Process of Sustainable Renovation," Sustainability, MDPI, vol. 4(6), pages 1-26, June.
    6. Stefan Olsson & Tove Malmqvist & Mauritz Glaumann, 2015. "Managing Sustainability Aspects in Renovation Processes: Interview Study and Outline of a Process Model," Sustainability, MDPI, vol. 7(6), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    2. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    3. Radhi, H., 2010. "On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions," Energy, Elsevier, vol. 35(3), pages 1412-1424.
    4. Chandratilake, S.R. & Dias, W.P.S., 2015. "Ratio based indicators and continuous score functions for better assessment of building sustainability," Energy, Elsevier, vol. 83(C), pages 137-143.
    5. Fu, Feng & Pan, Lingying & Ma, Linwei & Li, Zheng, 2013. "A simplified method to estimate the energy-saving potentials of frequent construction and demolition process in China," Energy, Elsevier, vol. 49(C), pages 316-322.
    6. Stephan, André & Stephan, Laurent, 2014. "Reducing the total life cycle energy demand of recent residential buildings in Lebanon," Energy, Elsevier, vol. 74(C), pages 618-637.
    7. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    8. Rai, Deepak & Sodagar, Behzad & Fieldson, Rosi & Hu, Xiao, 2011. "Assessment of CO2 emissions reduction in a distribution warehouse," Energy, Elsevier, vol. 36(4), pages 2271-2277.
    9. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    10. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    11. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    12. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    13. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.
    14. Tsai, Wen-Hsien & Lin, Sin-Jin & Liu, Jau-Yang & Lin, Wan-Rung & Lee, Kuen-Chang, 2011. "Incorporating life cycle assessments into building project decision-making: An energy consumption and CO2 emission perspective," Energy, Elsevier, vol. 36(5), pages 3022-3029.
    15. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
    16. Acquaye, Adolf & Duffy, Aidan & Basu, Biswajit, 2011. "Embodied emissions abatement--A policy assessment using stochastic analysis," Energy Policy, Elsevier, vol. 39(1), pages 429-441, January.
    17. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Zhang, Xutao & Gao, Yuefen, 2009. "Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment," Energy, Elsevier, vol. 34(11), pages 1870-1879.
    18. Lee, Wen-Shing & Kung, Chung-Kuan, 2011. "Using climate classification to evaluate building energy performance," Energy, Elsevier, vol. 36(3), pages 1797-1801.
    19. Dutta, Rohan & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2011. "Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier," Energy, Elsevier, vol. 36(5), pages 3204-3214.
    20. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:4:p:1893-1899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.