IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p375-381.html
   My bibliography  Save this article

Development of a computer program to locate potential sites for pumped hydroelectric energy storage

Author

Listed:
  • Connolly, D.
  • MacLaughlin, S.
  • Leahy, M.

Abstract

Pumped hydroelectric energy storage (PHES) is the largest and most mature form of energy storage currently available. However, the capital costs required for PHES are extremely large and the availability of suitable sites is decreasing. Therefore, identifying the remaining sites available for PHES is becoming vital so that the most beneficial location is chosen: in terms of capacity and economics. As a result, the aim of this work is to develop a computer program that will scan a terrain and identify if there are any feasible PHES sites on it. In this paper, a brief description of the program is provided, including the limitations identified during the initial development. Also, the program was used to evaluate a 20km × 40km area in the South West of Ireland so the results obtained from this study are discussed. Finally, future improvements to advance the program's capabilities are identified. The program has proven to date that it can identify feasible locations for PHES, however, further investigation is necessary to improve the site selection.

Suggested Citation

  • Connolly, D. & MacLaughlin, S. & Leahy, M., 2010. "Development of a computer program to locate potential sites for pumped hydroelectric energy storage," Energy, Elsevier, vol. 35(1), pages 375-381.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:375-381
    DOI: 10.1016/j.energy.2009.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420900437X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    2. Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
    3. Hoogwijk, Monique & van Vuuren, Detlef & de Vries, Bert & Turkenburg, Wim, 2007. "Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy," Energy, Elsevier, vol. 32(8), pages 1381-1402.
    4. Bakos, George C., 2002. "Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production," Applied Energy, Elsevier, vol. 72(3-4), pages 599-608, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    3. Dursun, Bahtiyar & Alboyaci, Bora, 2010. "The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1979-1988, September.
    4. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    5. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    6. Manolakos, D & Papadakis, G & Papantonis, D & Kyritsis, S, 2004. "A stand-alone photovoltaic power system for remote villages using pumped water energy storage," Energy, Elsevier, vol. 29(1), pages 57-69.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    8. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    9. Wen, Le & Suomalainen, Kiti & Sharp, Basil & Yi, Ming & Sheng, Mingyue Selena, 2022. "Impact of wind-hydro dynamics on electricity price: A seasonal spatial econometric analysis," Energy, Elsevier, vol. 238(PC).
    10. Zafirakis, D. & Kaldellis, J.K., 2009. "Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks," Energy Policy, Elsevier, vol. 37(5), pages 1958-1969, May.
    11. Dursun, Bahtiyar & Alboyaci, Bora & Gokcol, Cihan, 2011. "Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand," Energy, Elsevier, vol. 36(2), pages 864-872.
    12. Segurado, R. & Costa, M. & Duić, N. & Carvalho, M.G., 2015. "Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde," Energy, Elsevier, vol. 92(P3), pages 639-648.
    13. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    14. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    15. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    16. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    17. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    18. Ryan Prescott & G. Cornelis van Kooten & Hui Zhu, 2007. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Energy & Environment, , vol. 18(6), pages 723-746, November.
    19. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    20. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:375-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.