IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i1p375-381.html
   My bibliography  Save this item

Development of a computer program to locate potential sites for pumped hydroelectric energy storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lu, Xu & Wang, Siheng, 2017. "A GIS-based assessment of Tibet's potential for pumped hydropower energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1045-1054.
  2. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
  3. Wu, Yunna & Zhang, Ting & Xu, Chuanbo & Zhang, Xiaoyu & Ke, Yiming & Chu, Han & Xu, Ruhang, 2019. "Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making," Renewable Energy, Elsevier, vol. 139(C), pages 410-425.
  4. Pickard, William F., 2012. "A Nation-Sized Battery?," Energy Policy, Elsevier, vol. 45(C), pages 263-267.
  5. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
  6. Krajačić, Goran & Lončar, Dražen & Duić, Neven & Zeljko, Mladen & Lacal Arántegui, Roberto & Loisel, Rodica & Raguzin, Igor, 2013. "Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia," Applied Energy, Elsevier, vol. 101(C), pages 161-171.
  7. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
  8. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.
  9. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
  10. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
  11. Padrón, S. & Medina, J.F. & Rodríguez, A., 2011. "Analysis of a pumped storage system to increase the penetration level of renewable energy in isolated power systems. Gran Canaria: A case study," Energy, Elsevier, vol. 36(12), pages 6753-6762.
  12. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
  13. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
  14. Lu, Bin & Stocks, Matthew & Blakers, Andrew & Anderson, Kirsten, 2018. "Geographic information system algorithms to locate prospective sites for pumped hydro energy storage," Applied Energy, Elsevier, vol. 222(C), pages 300-312.
  15. Domfeh, M. K. & Diawuo, F. A. & Akpoti, Komlavi & Antwi, E. O. & Kabo-bah, A. T., 2023. "Lessons for pumped hydro energy storage systems uptake," Book Chapters,, International Water Management Institute.
  16. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
  17. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shrahily, Raid, 2016. "Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 761-776.
  18. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
  19. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
  20. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
  21. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  22. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
  23. Fitzgerald, Niall & Lacal Arántegui, Roberto & McKeogh, Eamon & Leahy, Paul, 2012. "A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes," Energy, Elsevier, vol. 41(1), pages 483-490.
  24. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
  25. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
  26. Larentis, Dante G. & Collischonn, Walter & Olivera, Francisco & Tucci, Carlos E.M., 2010. "Gis-based procedures for hydropower potential spotting," Energy, Elsevier, vol. 35(10), pages 4237-4243.
  27. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
  28. Nzotcha, Urbain & Nsangou, Jean Calvin & Kenfack, Joseph & Ngohe-Ekam, Paul Salomon & Hamandjoda, Oumarou & Bignom, Blaise, 2021. "Combining electric energy storage and deep-lake degassing by means of pumped hydropower," Applied Energy, Elsevier, vol. 304(C).
  29. Mason, I.G. & Page, S.C. & Williamson, A.G., 2013. "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand," Energy Policy, Elsevier, vol. 60(C), pages 324-333.
  30. Pradhan, Anish & Marence, Miroslav & Franca, Mário J., 2021. "The adoption of Seawater Pump Storage Hydropower Systems increases the share of renewable energy production in Small Island Developing States," Renewable Energy, Elsevier, vol. 177(C), pages 448-460.
  31. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.