IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4600-4606.html
   My bibliography  Save this article

Opportunities for the integration of absorption heat pumps in the pulp and paper process

Author

Listed:
  • Bakhtiari, Bahador
  • Fradette, Louis
  • Legros, Robert
  • Paris, Jean

Abstract

Implementation of absorption heat pumps (AHPs) in a Kraft pulping process was studied using a new methodology for the optimal integration of those devices in a process. Two generic opportunities were identified for an energy and water optimized mill: (i) integration of a double lift chiller in the bleaching chemical making plant to produce chilled and hot water simultaneously, using MP steam as the driving energy and, (ii) installation of a single stage heat pump to concentrate the black liquor and produce useful hot water by upgrading heat from the bleaching effluent and using MP steam as driving energy. The principles of AHPs operation and their efficient integration into a process are described. The simple payback time (SPB) and net present value (NPV) were used to evaluate the interest of such implementations. Considering 63 $/MWh for the steam price, SPB of 2.7 and 1.7 years have been estimated for the two cases.

Suggested Citation

  • Bakhtiari, Bahador & Fradette, Louis & Legros, Robert & Paris, Jean, 2010. "Opportunities for the integration of absorption heat pumps in the pulp and paper process," Energy, Elsevier, vol. 35(12), pages 4600-4606.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4600-4606
    DOI: 10.1016/j.energy.2010.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Andrea & Paris, Jean & Towers, Michael & Browne, Thomas, 2007. "Economics of trigeneration in a kraft pulp mill for enhanced energy efficiency and reduced GHG emissions," Energy, Elsevier, vol. 32(4), pages 474-481.
    2. Costa, Andrea & Bakhtiari, Bahador & Schuster, Sebastian & Paris, Jean, 2009. "Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency," Energy, Elsevier, vol. 34(3), pages 254-260.
    3. Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    2. Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2015. "Multi-functional heat pumps integration in power plants for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 147(C), pages 258-268.
    3. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    4. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    5. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    6. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
    8. Mateos-Espejel, Enrique & Savulescu, Luciana & Maréchal, François & Paris, Jean, 2010. "Systems interactions analysis for the energy efficiency improvement of a Kraft process," Energy, Elsevier, vol. 35(12), pages 5132-5142.
    9. van de Bor, D.M. & Infante Ferreira, C.A., 2013. "Quick selection of industrial heat pump types including the impact of thermodynamic losses," Energy, Elsevier, vol. 53(C), pages 312-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    2. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    3. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    4. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    5. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    6. Gebreegziabher, Tesfaldet & Oyedun, Adetoyese Olajire & Hui, Chi Wai, 2013. "Optimum biomass drying for combustion – A modeling approach," Energy, Elsevier, vol. 53(C), pages 67-73.
    7. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    8. Costa, Andrea & Bakhtiari, Bahador & Schuster, Sebastian & Paris, Jean, 2009. "Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency," Energy, Elsevier, vol. 34(3), pages 254-260.
    9. Nakajima, Masamitsu & Kojiro, Keisuke & Sugimoto, Hiroyuki & Miki, Tsunehisa & Kanayama, Kozo, 2011. "Studies on bamboo for sustainable and advanced utilization," Energy, Elsevier, vol. 36(4), pages 2049-2054.
    10. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    11. Compernolle, Tine & Witters, Nele & Van Passel, Steven & Thewys, Theo, 2011. "Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions," Energy, Elsevier, vol. 36(4), pages 1940-1947.
    12. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    13. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    14. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    15. Jönsson, Johanna & Berntsson, Thore, 2012. "Analysing the potential for implementation of CCS within the European pulp and paper industry," Energy, Elsevier, vol. 44(1), pages 641-648.
    16. Donnellan, Philip & Cronin, Kevin & Acevedo, Yaset & Byrne, Edmond, 2014. "Economic evaluation of an industrial high temperature lift heat transformer," Energy, Elsevier, vol. 73(C), pages 581-591.
    17. Sivakumar, R. & Saravanan, R. & Elaya Perumal, A. & Iniyan, S., 2016. "Fluidized bed drying of some agro products – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 280-301.
    18. Goh, Li Jin & Othman, Mohd Yusof & Mat, Sohif & Ruslan, Hafidz & Sopian, Kamaruzzaman, 2011. "Review of heat pump systems for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4788-4796.
    19. Wakim, Michel & Rivera-Tinoco, Rodrigo, 2019. "Absorption heat transformers: Sensitivity study to answer existing discrepancies," Renewable Energy, Elsevier, vol. 130(C), pages 881-890.
    20. Rivera, W. & Huicochea, A. & Martínez, H. & Siqueiros, J. & Juárez, D. & Cadenas, E., 2011. "Exergy analysis of an experimental heat transformer for water purification," Energy, Elsevier, vol. 36(1), pages 320-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4600-4606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.