IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i12p2420-2427.html
   My bibliography  Save this article

Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation

Author

Listed:
  • Halmann, M.
  • Frei, A.
  • Steinfeld, A.

Abstract

The production of aluminum by the electrolytic Hall–Héroult process suffers from high energy requirements, the release of perfluorocarbons, and vast greenhouse gas emissions. The alternative carbothermic reduction of alumina, while significantly less energy-intensive, is complicated by the formation of aluminum carbide and oxycarbides. In the present work, the formation of Al, as well as Al2OC, Al4O4C, and Al4C3 was proven by experiments on mixtures of Al2O3 and activated carbon in an Ar atmosphere submitted to heat pulses by an induction furnace. Thermochemical equilibrium calculations indicate that the Al2O3-reduction using carbon as reducing agent is favored in the presence of limited amounts of oxygen. The temperature threshold for the onset of aluminum production is lowered, the formation of Al4C3 is decreased, and the yield of aluminum is improved. Significant further enhancement in the carbothermic reduction of Al2O3 is predicted by using CH4 as the reducing agent, again in the presence of limited amounts of oxygen. In this case, an important by-product is syngas, with a H2/CO molar ratio of about 2, suitable for methanol or Fischer–Tropsch syntheses. Under appropriate temperature and stoichiometry of reactants, the process can be designed to be thermo-neutral. Using alumina, methane, and oxygen as reagents, the co-production of aluminum with syngas, to be converted to methanol, predicts fuel savings of about 68% and CO2 emission avoidance of about 91%, vis-à-vis the conventional production of Al by electrolysis and of methanol by steam reforming of CH4. When using carbon (such as coke or petcoke) as reducing agent, fuel savings of 66% and CO2 emission avoidance of 15% are predicted. Preliminary evaluation for the proposed process indicates favorable economics, and the required high temperatures process heat is readily attainable using concentrated solar energy.

Suggested Citation

  • Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2420-2427
    DOI: 10.1016/j.energy.2007.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinfeld, A. & Brack, M. & Meier, A. & Weidenkaff, A. & Wuillemin, D., 1998. "A solar chemical reactor for co-production of zinc and synthesis gas," Energy, Elsevier, vol. 23(10), pages 803-814.
    2. Murray, Jean P. & Steinfeld, Aldo & Fletcher, Edward A., 1995. "Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides," Energy, Elsevier, vol. 20(7), pages 695-704.
    3. Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
    4. Steinfeld, Aldo, 1997. "High-temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry," Energy, Elsevier, vol. 22(2), pages 311-316.
    5. Steinfeld, A. & Kuhn, P. & Karni, J., 1993. "High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4-reduction with methane," Energy, Elsevier, vol. 18(3), pages 239-249.
    6. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.
    7. Steinfeld, Aldo & Fletcher, Edward A., 1991. "Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy," Energy, Elsevier, vol. 16(7), pages 1011-1019.
    8. Steinfeld, A. & Thompson, G., 1994. "Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries," Energy, Elsevier, vol. 19(10), pages 1077-1081.
    9. Werder, Miriam & Steinfeld, Aldo, 2000. "Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas," Energy, Elsevier, vol. 25(5), pages 395-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    2. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    3. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    4. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    5. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
    2. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    3. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.
    4. Halmann, M. & Steinfeld, A., 2006. "Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide," Energy, Elsevier, vol. 31(15), pages 3171-3185.
    5. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    6. Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
    7. Adinberg, Roman & Epstein, Michael, 2004. "Experimental study of solar reactors for carboreduction of zinc oxide," Energy, Elsevier, vol. 29(5), pages 757-769.
    8. Kodama, T. & Shimizu, T. & Satoh, T. & Shimizu, K.-I., 2003. "Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst," Energy, Elsevier, vol. 28(11), pages 1055-1068.
    9. Kodama, T & Ohtake, H & Matsumoto, S & Aoki, A & Shimizu, T & Kitayama, Y, 2000. "Thermochemical methane reforming using a reactive WO3/W redox system," Energy, Elsevier, vol. 25(5), pages 411-425.
    10. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    11. Voicu-Teodor Muica & Alexandru Ozunu & Zoltàn Török, 2021. "Comparative Life Cycle Impact Assessment between the Productions of Zinc from Conventional Concentrates versus Waelz Oxides Obtained from Slags," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    12. Sarker, M.R.I. & Mandal, Soumya & Tuly, Sumaiya Sadika, 2018. "Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver," Renewable Energy, Elsevier, vol. 129(PA), pages 409-418.
    13. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    14. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    15. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    16. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    17. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    18. Zhang, Bo & Ji, Changwei & Wang, Shuofeng & Liu, Xiaolong, 2014. "Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions," Energy, Elsevier, vol. 74(C), pages 829-835.
    19. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    20. Epstein, Michael & Ehrensberger, Koebi & Yogev, Amnon, 2004. "Ferro-reduction of ZnO using concentrated solar energy," Energy, Elsevier, vol. 29(5), pages 745-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2420-2427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.