IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i12p1069-1084.html
   My bibliography  Save this article

Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons

Author

Listed:
  • Halmann, M.
  • Frei, A.
  • Steinfeld, A.

Abstract

Stoichiometry and temperature requirements are determined for combining the endothermic reduction of metal oxides (ZnO, Fe2O3, and MgO) with the exothermic partial oxidation of hydrocarbons (CH4, n-butane, n-octane, and n-dodecane) in order to co-produce simultaneously metals and syngas in thermo-neutral reactions. Thermogravimetric and GC measurements on the combined reduction of ZnO and Fe2O3 with the partial oxidation of CH4 were conducted at 1400 K to experimentally verify the products predicted by equilibrium computations, and resulted in the complete reduction to Zn and Fe, respectively, while producing high quality syngas. A preliminary economic assessment that assumes a natural gas price of 11.9 US$/MWh and credit for zinc sale at 750 US$/metric ton, indicates a competitive cost of hydrogen production at 6.0 US$/MWh, based on its high heating value. The proposed combined process offers the possibility of co-producing metals and syngas in autothermal non-catalytic reactors, with significant avoidance of CO2 emission.

Suggested Citation

  • Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:12:p:1069-1084
    DOI: 10.1016/S0360-5442(02)00080-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00080-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinfeld, A. & Brack, M. & Meier, A. & Weidenkaff, A. & Wuillemin, D., 1998. "A solar chemical reactor for co-production of zinc and synthesis gas," Energy, Elsevier, vol. 23(10), pages 803-814.
    2. Steinfeld, Aldo, 1997. "High-temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry," Energy, Elsevier, vol. 22(2), pages 311-316.
    3. Steinfeld, A. & Kuhn, P. & Karni, J., 1993. "High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4-reduction with methane," Energy, Elsevier, vol. 18(3), pages 239-249.
    4. Steinfeld, A. & Larson, C. & Palumbo, R. & Foley, M., 1996. "Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat," Energy, Elsevier, vol. 21(3), pages 205-222.
    5. Steinfeld, Aldo & Fletcher, Edward A., 1991. "Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy," Energy, Elsevier, vol. 16(7), pages 1011-1019.
    6. Werder, Miriam & Steinfeld, Aldo, 2000. "Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas," Energy, Elsevier, vol. 25(5), pages 395-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
    2. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.
    3. Halmann, M. & Steinfeld, A., 2006. "Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide," Energy, Elsevier, vol. 31(15), pages 3171-3185.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
    2. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    3. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    4. Adinberg, Roman & Epstein, Michael, 2004. "Experimental study of solar reactors for carboreduction of zinc oxide," Energy, Elsevier, vol. 29(5), pages 757-769.
    5. Kodama, T. & Shimizu, T. & Satoh, T. & Shimizu, K.-I., 2003. "Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst," Energy, Elsevier, vol. 28(11), pages 1055-1068.
    6. Wieckert, Christian & Palumbo, Robert & Frommherz, Ulrich, 2004. "A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO," Energy, Elsevier, vol. 29(5), pages 771-787.
    7. Kodama, T & Ohtake, H & Matsumoto, S & Aoki, A & Shimizu, T & Kitayama, Y, 2000. "Thermochemical methane reforming using a reactive WO3/W redox system," Energy, Elsevier, vol. 25(5), pages 411-425.
    8. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "A hybrid solar chemical looping combustion system with a high solar share," Applied Energy, Elsevier, vol. 126(C), pages 69-77.
    9. Voicu-Teodor Muica & Alexandru Ozunu & Zoltàn Török, 2021. "Comparative Life Cycle Impact Assessment between the Productions of Zinc from Conventional Concentrates versus Waelz Oxides Obtained from Slags," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    10. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    11. Sarker, M.R.I. & Mandal, Soumya & Tuly, Sumaiya Sadika, 2018. "Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver," Renewable Energy, Elsevier, vol. 129(PA), pages 409-418.
    12. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    13. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    14. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.
    15. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    16. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    17. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    18. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    19. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    20. Epstein, Michael & Ehrensberger, Koebi & Yogev, Amnon, 2004. "Ferro-reduction of ZnO using concentrated solar energy," Energy, Elsevier, vol. 29(5), pages 745-756.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:12:p:1069-1084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.