IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034849.html
   My bibliography  Save this article

Energy transition as a solution for energy security risk: Empirical evidence from BRI countries

Author

Listed:
  • Aslam, Naveed
  • Yang, Wanping
  • Saeed, Rabia
  • Ullah, Fahim

Abstract

This study investigates the effect of energy transition on energy security risk for 41 BRI during 1995–2018 using second generation panel econometric techniques. First this study computes total energy share from renewable resources and then analyses their effects on energy security risk. According to the results of augmented mean group (AMG) and common correlated effect mean group (CCEMG) estimates, renewable resources significantly decrease energy security risk. Energy transition as variable of interest significantly decreases energy security risk with renewable energy resources. This study recommends that a structural change in the form of energy transition reduce energy security risk for selected BRI countries. This is because non-renewable resources although fulfil domestic energy requirements but degrades the environment and still there exists energy security in the form of energy demand and supply, affordability, cleanability sustainability and availability. Corresponding to these findings, BRI countries must implement policies to invest more in renewable energy resources and less utilization of non-renewable resources to prevent themselves from energy security risk in the long run.

Suggested Citation

  • Aslam, Naveed & Yang, Wanping & Saeed, Rabia & Ullah, Fahim, 2024. "Energy transition as a solution for energy security risk: Empirical evidence from BRI countries," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034849
    DOI: 10.1016/j.energy.2023.130090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dike, Jude Chukwudi, 2013. "Measuring the security of energy exports demand in OPEC economies," Energy Policy, Elsevier, vol. 60(C), pages 594-600.
    2. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    3. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    4. Wang, Jun & Ghosh, Sudeshna & Olayinka, Olohunlana Aminat & Doğan, Buhari & Shah, Muhammad Ibrahim & Zhong, Kaiyang, 2022. "Achieving energy security amidst the world uncertainty in newly industrialized economies: The role of technological advancement," Energy, Elsevier, vol. 261(PB).
    5. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    6. Bezdek, Roger H., 1993. "The environmental, health, and safety implications of solar energy in central station power production," Energy, Elsevier, vol. 18(6), pages 681-685.
    7. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    8. Peter Burgherr & Stefan Hirschberg & Matteo Spada, 2013. "Comparative Assessment of Accident Risks in the Energy Sector," International Series in Operations Research & Management Science, in: Raimund M. Kovacevic & Georg Ch. Pflug & Maria Teresa Vespucci (ed.), Handbook of Risk Management in Energy Production and Trading, edition 127, chapter 0, pages 475-501, Springer.
    9. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    10. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    11. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    12. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    13. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    14. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    15. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    16. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    17. Muhammad Awais Baloch & Ilhan Ozturk & Festus Victor Bekun & Danish Khan, 2021. "Modeling the dynamic linkage between financial development, energy innovation, and environmental quality: Does globalization matter?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 176-184, January.
    18. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    19. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    20. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    21. Huang, Zhehao & Liao, Gaoke & Li, Zhenghui, 2019. "Loaning scale and government subsidy for promoting green innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 148-156.
    22. Che, Xiahui & Zhu, Bangzhu & Wang, Ping, 2021. "Assessing global energy poverty: An integrated approach," Energy Policy, Elsevier, vol. 149(C).
    23. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    24. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    25. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    26. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    27. Westerlund, Joakim & Thuraisamy, Kannan & Sharma, Susan, 2015. "On the use of panel cointegration tests in energy economics," Energy Economics, Elsevier, vol. 50(C), pages 359-363.
    28. Chang, Tsangyao & Gupta, Rangan & Inglesi-Lotz, Roula & Simo-Kengne, Beatrice & Smithers, Devon & Trembling, Amy, 2015. "Renewable energy and growth: Evidence from heterogeneous panel of G7 countries using Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1405-1412.
    29. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    30. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    31. Gençer, Emre & Torkamani, Sarah & Miller, Ian & Wu, Tony Wenzhao & O'Sullivan, Francis, 2020. "Sustainable energy system analysis modeling environment: Analyzing life cycle emissions of the energy transition," Applied Energy, Elsevier, vol. 277(C).
    32. Yang, Zhenbing & Hao, Chunyan & Shao, Shuai & Chen, Zhuo & Yang, Lili, 2022. "Appropriate technology and energy security: From the perspective of biased technological change," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    33. Bigerna, Simona & D’Errico, Maria Chiara & Polinori, Paolo, 2021. "Energy security and RES penetration in a growing decarbonized economy in the era of the 4th industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    34. Barnett, Jon & Dessai, Suraje & Webber, Michael, 2004. "Will OPEC lose from the Kyoto Protocol?," Energy Policy, Elsevier, vol. 32(18), pages 2077-2088, December.
    35. Jaber, J.O. & Elkarmi, Fawwaz & Alasis, Emil & Kostas, Anagnostopoulos, 2015. "Employment of renewable energy in Jordan: Current status, SWOT and problem analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 490-499.
    36. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    37. Supersberger, Nikolaus & Führer, Laura, 2011. "Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects," Energy Policy, Elsevier, vol. 39(8), pages 4458-4465, August.
    38. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    39. Zhang, Xiaoming & Zhang, Tong & Lee, Chien-Chiang, 2022. "The path of financial risk spillover in the stock market based on the R-vine-Copula model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    2. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    3. Bashir, Muhammad Farhan & Pan, Yanchun & Shahbaz, Muhammad & Ghosh, Sudeshna, 2023. "How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries," Renewable Energy, Elsevier, vol. 204(C), pages 697-709.
    4. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    5. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    6. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    7. Umme Habiba & Cao Xinbang, 2022. "An Investigation of the Dynamic Relationships Between Financial Development, Renewable Energy Use, and CO2 Emissions," SAGE Open, , vol. 12(4), pages 21582440221, November.
    8. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    9. Liu, Fei & Zhang, Xudong & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Asymmetric and moderating role of industrialisation and technological innovation on energy intensity: Evidence from BRICS economies," Renewable Energy, Elsevier, vol. 198(C), pages 1364-1372.
    10. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    11. Lei, Xiying & Alharthi, Majed & Ahmad, Ishtiaq & Aziz, Babar & Abdin, Zain ul, 2022. "Importance of international relations for the promotion of renewable energy, preservation of natural resources and environment: Empirics from SEA nations," Renewable Energy, Elsevier, vol. 196(C), pages 1250-1257.
    12. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    13. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    14. Alvarado, Rafael & Tillaguango, Brayan & Murshed, Muntasir & Ochoa-Moreno, Santiago & Rehman, Abdul & Işık, Cem & Alvarado-Espejo, Johana, 2022. "Impact of the informal economy on the ecological footprint: The role of urban concentration and globalization," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 750-767.
    15. Mahmood, Ahmad & Zahoor, Ahmed & Xiyue, Yang & Nazim, Hussain & Sinha, Avik, 2021. "Financial development and environmental degradation: Do human capital and institutional quality make a difference?," MPRA Paper 110039, University Library of Munich, Germany, revised 2021.
    16. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    17. Sun, Yunpeng & Li, Haoning & Andlib, Zubaria & Genie, Mesfin G., 2022. "How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques," Renewable Energy, Elsevier, vol. 185(C), pages 996-1005.
    18. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2020. "Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia," MPRA Paper 104277, University Library of Munich, Germany, revised 2020.
    19. Cengiz Aytun & Cemil Serhat Akin, 2022. "Can education lower the environmental degradation? Bootstrap panel Granger causality analysis for emerging countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10666-10694, September.
    20. Wu, Anbing & Chen, Junying & Zhang, Yanyan, 2023. "Natural resources and energy resources prices an answer to energy insecurity? The role of mineral, forest, coal resources and financial development," Resources Policy, Elsevier, vol. 87(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.