IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223009131.html
   My bibliography  Save this article

Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment

Author

Listed:
  • Ping, Xu
  • Yang, Fubin
  • Zhang, Hongguang
  • Xing, Chengda
  • Yang, Anren
  • Yan, Yinlian
  • Pan, Yachao
  • Wang, Yan

Abstract

Efficient construction and optimization of mapping correlation of organic Rankine cycle (ORC) system under driving environment is the key to obtain the actual waste heat recovery limit. Under external and internal disturbances, the ORC operating characteristics have obvious uncertainty and nonlinearity. Based on driving conditions and ORC operation characteristics, this paper proposes an ensemble approach of self-organizing adaptive maps and dynamic multi-objective optimization for ORC under driving environment from the perspectives of coupling ORC integration system, variable data selection, parameter coupling correlation, adaptive structure design and multi-objective optimization. This approach can achieve efficient capture, construction and optimization of ORC dynamic characteristics in complex driving environment. Compared with direct modeling, input variables decreased by at least 69.23%. RMSE decreased by at least 66.06%. Approach can adjust operating parameters in real time according to the fluctuation of actual driving environment, break through the trade-off effect between thermal efficiency and emissions of CO2 equivalent (ECE), to keep the optimal state of thermal efficiency and ECE continuously. The approach proposed in this paper can provide a new idea for efficient construction and rapid optimization of ORC dynamic mapping association in driving environment.

Suggested Citation

  • Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223009131
    DOI: 10.1016/j.energy.2023.127519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
    2. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    4. Yang, Jingye & Gao, Lei & Ye, Zhenhong & Hwang, Yunho & Chen, Jiangping, 2021. "Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application," Energy, Elsevier, vol. 217(C).
    5. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    6. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    7. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun, 2019. "Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles," Energy, Elsevier, vol. 168(C), pages 332-345.
    8. Pili, Roberto & Bojer Jørgensen, Søren & Haglind, Fredrik, 2022. "Multi-objective optimization of organic Rankine cycle systems considering their dynamic performance," Energy, Elsevier, vol. 246(C).
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. He, Yaoyao & Zheng, Yaya, 2018. "Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function," Energy, Elsevier, vol. 154(C), pages 143-156.
    11. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    12. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    13. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    14. Arslan, Muhammed & Yılmaz, Ceyhun, 2022. "Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery," Energy, Elsevier, vol. 248(C).
    15. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    16. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    17. Tian, Zhirui & Wang, Jiyang, 2022. "Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm," Energy, Elsevier, vol. 254(PA).
    18. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    19. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    20. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    21. Johnson, Eric P., 2011. "Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources," Energy Policy, Elsevier, vol. 39(3), pages 1369-1381, March.
    22. Xu, Bin & Li, Xiaoya, 2021. "A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 286(C).
    23. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    24. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    25. Penalba, Markel & Aizpurua, Jose Ignacio & Martinez-Perurena, Ander & Iglesias, Gregorio, 2022. "A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    26. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze(E)," Applied Energy, Elsevier, vol. 321(C).
    27. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    28. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    29. Ding, Yang & Liu, Chao & Zhang, Cheng & Xu, Xiaoxiao & Li, Qibin & Mao, Lianfei, 2018. "Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid," Energy, Elsevier, vol. 145(C), pages 52-64.
    30. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    31. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide, 2022. "Techno-economic performance of the 2-propanol/1-butanol zeotropic mixture and 2-propanol/water azeotropic mixture as a working fluid in Organic Rankine Cycles," Energy, Elsevier, vol. 246(C).
    32. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    33. Palagi, Laura & Sciubba, Enrico & Tocci, Lorenzo, 2019. "A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications," Applied Energy, Elsevier, vol. 237(C), pages 210-226.
    34. Huang, Junwei & Xiao, Qingtai & Liu, Jingjing & Wang, Hua, 2019. "Modeling heat transfer properties in an ORC direct contact evaporator using RBF neural network combined with EMD," Energy, Elsevier, vol. 173(C), pages 306-316.
    35. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    4. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    6. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    7. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    8. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    9. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    10. Tian, Yaming & Zhang, Hongguang & Li, Jian & Hou, Xiaochen & Zhao, Tenglong & Yang, Fubin & Xu, Yonghong & Wang, Xin, 2018. "Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 809-820.
    11. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    12. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    13. Yan, Yinlian & Yang, Fubin & Zhang, Hongguang & Pan, Yachao & Ping, Xu & Ge, Zhong, 2023. "Study on performance evaluation framework and design/ selection guidelines of working fluids for subcritical organic Rankine cycle from molecular structure perspective," Energy, Elsevier, vol. 282(C).
    14. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    15. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    17. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    18. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    19. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    20. Feng, Yong-Qiang & Zhang, Qiang & Xu, Kang-Jing & Wang, Chun-Ming & He, Zhi-Xia & Hung, Tzu-Chen, 2023. "Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223009131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.