IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009339.html
   My bibliography  Save this article

Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment

Author

Listed:
  • Ping, Xu
  • Yang, Fubin
  • Zhang, Hongguang
  • Zhang, Jian
  • Xing, Chengda
  • Yan, Yinlian
  • Yang, Anren
  • Wang, Yan

Abstract

Efficient capture and global optimization of organic Rankine cycle (ORC) operating features in road environment is the key to obtain actual waste heat recovery potential. The complexity of time-varying characteristics intensifies the nonlinear coupling relationship between ORC performance and parameters. This paper first designs and builds an ORC experimental system for recovering waste heat from internal combustion engine (ICE). The experimental system includes ICE and its measurement subsystem, ORC subsystem, expander lubrication subsystem, cooling subsystem, and ORC measurement subsystem. R245fa is used as working fluid; The expander adopts a specially designed single screw expander. The performance of ORC waste heat recovery is tested by adjusting the operating conditions of the ICE, expander, pump, and valve opening. The temperature range of waste heat is 627–686 K. Subsequently, a dynamic feature capture and global multi-objective optimization approach for ORC is proposed. The results show that the precision of dynamic feature capture can be improved at least 41.78% with the introduction of information theory in complex environment. Frequent fluctuation of vehicle speed is not conducive to the improvement of evaporator inlet temperature at working fluid side. As the speed of the vehicle is greatly reduced, the evaporator inlet temperature drops sharply. The frequent fluctuation of speed will intensify the nonlinear correlation between operating parameters and system performance and make the system performance more dependent on the coupling correlation between operating parameters. The approach proposed in this paper can provide a new idea for efficient capture of dynamic characteristics and global multi-objective optimization of ORC in road environment.

Suggested Citation

  • Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009339
    DOI: 10.1016/j.apenergy.2023.121569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
    2. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    4. Arslan, Muhammed & Yılmaz, Ceyhun, 2022. "Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery," Energy, Elsevier, vol. 248(C).
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    6. Yang, Jingye & Gao, Lei & Ye, Zhenhong & Hwang, Yunho & Chen, Jiangping, 2021. "Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application," Energy, Elsevier, vol. 217(C).
    7. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    8. Wang, Enhua & Zhang, Mengru & Meng, Fanxiao & Zhang, Hongguang, 2022. "Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine," Energy, Elsevier, vol. 243(C).
    9. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    11. Cao, Yujie & Cheng, Ming & Zhang, Sufang & Mao, Hongju & Wang, Peng & Li, Chao & Feng, Yihui & Ding, Zhaohao, 2022. "Data-driven flexibility assessment for internet data center towards periodic batch workloads," Applied Energy, Elsevier, vol. 324(C).
    12. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    13. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    14. Xu, Bin & Li, Xiaoya, 2021. "A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 286(C).
    15. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    16. Penalba, Markel & Aizpurua, Jose Ignacio & Martinez-Perurena, Ander & Iglesias, Gregorio, 2022. "A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    18. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    19. Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
    20. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    21. Li, Wenguang & Yu, Zhibin, 2021. "Cavitating flows of organic fluid with thermodynamic effect in a diaphragm pump for organic Rankine cycle systems," Energy, Elsevier, vol. 237(C).
    22. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    23. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    24. Palagi, Laura & Sciubba, Enrico & Tocci, Lorenzo, 2019. "A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications," Applied Energy, Elsevier, vol. 237(C), pages 210-226.
    25. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    3. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    4. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    6. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    7. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
    8. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    9. Feng, Yong-Qiang & Zhang, Qiang & Xu, Kang-Jing & Wang, Chun-Ming & He, Zhi-Xia & Hung, Tzu-Chen, 2023. "Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology," Energy, Elsevier, vol. 263(PC).
    10. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    11. Yan, Yinlian & Yang, Fubin & Zhang, Hongguang & Pan, Yachao & Ping, Xu & Ge, Zhong, 2023. "Study on performance evaluation framework and design/ selection guidelines of working fluids for subcritical organic Rankine cycle from molecular structure perspective," Energy, Elsevier, vol. 282(C).
    12. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
    14. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    15. Shiqi Wang & Zhongyuan Yuan, 2020. "A Hot Water Split-Flow Dual-Pressure Strategy to Improve System Performance for Organic Rankine Cycle," Energies, MDPI, vol. 13(13), pages 1-21, June.
    16. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    17. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    18. Chen, Chonghui & Xing, Lingli & Su, Wen & Lin, Xinxing, 2023. "Performance prediction and design of CO2 mixtures with the PR-VDW model and molecular groups for the transcritical power cycle," Energy, Elsevier, vol. 282(C).
    19. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.
    20. Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.