IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222029656.html
   My bibliography  Save this article

Auction design for capacity allocation in the petroleum pipeline under fair opening

Author

Listed:
  • Liao, Qi
  • Tu, Renfu
  • Zhang, Wan
  • Wang, Bohong
  • Liang, Yongtu
  • Zhang, Haoran

Abstract

Auction is a dominant way to allocate transport capacities for the aim of profit, fairness, and transparency. Previous related work focuses on the natural gas pipeline and cannot be applied to the petroleum pipeline for its special technique of transporting multiple batches. This paper designs a bi-level model for capacity auction of the petroleum pipeline, which facilitates fair competition and free flow of petroleum products in market. The upper-level model simulates the decision-making process of pipeline company, and the lower-level one determines if shippers bid up prices for capacities somewhere. A real-world pipeline is taken as a case to explore the impact of different auction designs and proration on capacity allocation. New shippers obtain all the nominations of 18,700 m3 by auction but lost the capacities of 3,523 m3 by proration. Compared to proration, auction leads to a profit growth of 181,545 CNY and 150,019 CNY to pipeline company and new shippers respectively but a decrease of 4,586 CNY to regular shippers. Different orders of offering price lead to different outcomes regarding fairness and revenue. Letting new shippers offer price first is suggested as a base to design auction for capacity allocation since it generates a reduction of 0.2% to regular shippers but an increase of over 12% to others.

Suggested Citation

  • Liao, Qi & Tu, Renfu & Zhang, Wan & Wang, Bohong & Liang, Yongtu & Zhang, Haoran, 2023. "Auction design for capacity allocation in the petroleum pipeline under fair opening," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222029656
    DOI: 10.1016/j.energy.2022.126079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Attar, Mehdi & Repo, Sami & Mann, Pierre, 2022. "Congestion management market design- Approach for the Nordics and Central Europe," Applied Energy, Elsevier, vol. 313(C).
    2. Pickl, Matthias & Wirl, Franz, 2011. "Auction design for gas pipeline transportation capacity--The case of Nabucco and its open season," Energy Policy, Elsevier, vol. 39(4), pages 2143-2151, April.
    3. Lim, Zhen-Wen & Goh, Kim-Leng, 2019. "Natural gas industry transformation in Peninsular Malaysia: The journey towards a liberalised market," Energy Policy, Elsevier, vol. 128(C), pages 197-211.
    4. Aliabadi, Danial Esmaeili & Kaya, Murat & Şahin, Güvenç, 2017. "An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms," Energy Policy, Elsevier, vol. 100(C), pages 191-205.
    5. Jacquillat, Alexandre & Vaze, Vikrant & Wang, Weilong, 2022. "Primary versus secondary infrastructure capacity allocation mechanisms," European Journal of Operational Research, Elsevier, vol. 303(2), pages 668-687.
    6. Avalos, Roger & Fitzgerald, Timothy & Rucker, Randal R., 2016. "Measuring the effects of natural gas pipeline constraints on regional pricing and market integration," Energy Economics, Elsevier, vol. 60(C), pages 217-231.
    7. Stern, J. & Turvey, R., 2003. "Auctions of capacity in network industries," Utilities Policy, Elsevier, vol. 11(1), pages 1-8, March.
    8. Mastropietro, Paolo & Rodilla, Pablo & Batlle, Carlos, 2015. "National capacity mechanisms in the European internal energy market: Opening the doors to neighbours," Energy Policy, Elsevier, vol. 82(C), pages 38-47.
    9. Afshar, Karim & Ghiasvand, Farshad Shamsini & Bigdeli, Nooshin, 2018. "Optimal bidding strategy of wind power producers in pay-as-bid power markets," Renewable Energy, Elsevier, vol. 127(C), pages 575-586.
    10. Vazquez, Miguel & Hallack, Michelle, 2013. "Need and design of short-term auctions in the EU gas markets," Energy Policy, Elsevier, vol. 63(C), pages 484-493.
    11. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    12. Hiller, Benjamin & Koch, Thorsten & Schewe, Lars & Schwarz, Robert & Schweiger, Jonas, 2018. "A system to evaluate gas network capacities: Concepts and implementation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 797-808.
    13. Csercsik, Dávid, 2022. "Convex combinatorial auction of pipeline network capacities," Energy Economics, Elsevier, vol. 111(C).
    14. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Zhang, Yang & Zhou, Xingyuan & Liang, Yongtu, 2020. "Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Renfu & Jiao, Yingqi & Qiu, Rui & Liao, Qi & Xu, Ning & Du, Jian & Liang, Yongtu, 2023. "Energy saving and consumption reduction in the transportation of petroleum products: A pipeline pricing optimization perspective," Applied Energy, Elsevier, vol. 342(C).
    2. Priyanka Shinde & Ioannis Boukas & David Radu & Miguel Manuel de Villena & Mikael Amelin, 2021. "Analyzing Trade in Continuous Intra-Day Electricity Market: An Agent-Based Modeling Approach," Energies, MDPI, vol. 14(13), pages 1-31, June.
    3. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    4. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    5. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    6. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    7. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    8. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    9. Luyao Zhang & Fan Zhang, 2023. "Understand Waiting Time in Transaction Fee Mechanism: An Interdisciplinary Perspective," Papers 2305.02552, arXiv.org.
    10. Lade, Gabriel E. & Rudik, Ivan, 2020. "Costs of inefficient regulation: Evidence from the Bakken," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
    11. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    12. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    13. Gugler, Klaus & Haxhimusa, Adhurim, 2019. "Market integration and technology mix: Evidence from the German and French electricity markets," Energy Policy, Elsevier, vol. 126(C), pages 30-46.
    14. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    15. Debin Fang & Qiyu Ren & Qian Yu, 2018. "How Elastic Demand Affects Bidding Strategy in Electricity Market: An Auction Approach," Energies, MDPI, vol. 12(1), pages 1-13, December.
    16. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    17. Alexandre Jacquillat & Vikrant Vaze, 2018. "Interairline Equity in Airport Scheduling Interventions," Transportation Science, INFORMS, vol. 52(4), pages 941-964, August.
    18. Núñez, Héctor M. & Trujillo-Barrera, Andres & Etienne, Xiaoli, 2022. "Declining integration in the US natural gas market," Resources Policy, Elsevier, vol. 78(C).
    19. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    20. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222029656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.