IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222028912.html
   My bibliography  Save this article

Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics

Author

Listed:
  • Ding, Qi
  • Xiao, Xinping
  • Kong, Dekai

Abstract

An objective and accurate forecast of carbon emissions can provide the government with an important baseline for the implementation of the Green Economic Development Strategy. This paper considers the time-lag effect and the interaction effect of the influencing factors on carbon emissions simultaneously and establishes a new grey multivariate coupled model (CTGM(1,N)) for carbon emission projection by introducing the Choquet fuzzy integral and grey multivariate delay model. To further promote the prediction performance, the time-lag number of each influencing factor is determined by time-delay grey correlation analysis, and the whale optimization algorithm is designed to acquire the optimal parameters and accuracy of the model. The new model is designed to fitting carbon emissions data in three countries and compare it to six reference models. The performance test shows that the CTGM(1,N) model has high stability. The results of the forecasts show that China's carbon emissions are expected to rise by 1.17% by 2025 from 2020 levels. Meanwhile, emissions will decrease by 5.08% (US) and 0.88% (Japan). The prediction results were consistent with the development status of the three countries. According to the results, we can grasp the development trend of carbon emissions and formulate targeted strategies to achieve sustainable development.

Suggested Citation

  • Ding, Qi & Xiao, Xinping & Kong, Dekai, 2023. "Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028912
    DOI: 10.1016/j.energy.2022.126005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    2. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    3. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    4. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    5. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    6. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    7. Xu, Haitao & Pan, Xiongfeng & Guo, Shucen & Lu, Yuduo, 2021. "Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis," Energy, Elsevier, vol. 228(C).
    8. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    9. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    10. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    11. Talbi, Besma, 2017. "CO2 emissions reduction in road transport sector in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 232-238.
    12. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    13. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    15. Wu, Lifeng & Liu, Sifeng & Liu, Dinglin & Fang, Zhigeng & Xu, Haiyan, 2015. "Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model," Energy, Elsevier, vol. 79(C), pages 489-495.
    16. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishnamurthy Baskar Keerthana & Shih-Wei Wu & Mu-En Wu & Thangavelu Kokulnathan, 2023. "The United States Energy Consumption and Carbon Dioxide Emissions: A Comprehensive Forecast Using a Regression Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    2. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    3. Ming Meng & Wei Shang & Xinfang Wang & Tingting Pang, 2020. "When will China fulfill its carbon‐related intended nationally determined contributions? An in‐depth environmental Kuznets curve analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1039-1049, October.
    4. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    5. Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    6. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    7. Ameer, Ayesha & Munir, Kashif, 2016. "Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Selected Asian Countries," MPRA Paper 74571, University Library of Munich, Germany.
    8. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    9. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    10. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    11. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    12. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    13. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    14. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    15. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    16. Alam & Paramati, 2015. "Do oil consumption and economic growth intensify environmental degradation? Evidence from developing economies," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5186-5203, October.
    17. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    18. Jiang-Long Liu & Chao-Qun Ma & Yi-Shuai Ren & Xin-Wei Zhao, 2020. "Do Real Output and Renewable Energy Consumption Affect CO 2 Emissions? Evidence for Selected BRICS Countries," Energies, MDPI, vol. 13(4), pages 1-18, February.
    19. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    20. Hang Jiang & Peng Jiang & Peiyi Kong & Yi-Chung Hu & Cheng-Wen Lee, 2020. "A Predictive Analysis of China’s CO 2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model," Sustainability, MDPI, vol. 12(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.