IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015468.html
   My bibliography  Save this article

Experimental investigations of water droplet transient phase changes in flue gas flow in the range of temperatures characteristic of condensing economizer technologies

Author

Listed:
  • Miliauskas, Gintautas
  • Puida, Egidijus
  • Poškas, Robertas
  • Ragaišis, Valdas
  • Paukštaitis, Linas
  • Jouhara, Hussam
  • Mingilaitė, Laura

Abstract

The heating and phase changes of water droplets in 140 °C air flow humidified up to water vapor volumetric fraction of 0.3 were investigated experimentally in the context of heat recovery from flue gases with condensing economizers. The experiments were performed in experimental set-up, where atmospheric air of certain temperature and humidity passed over a water droplet suspended on thermocouple ball. It was demonstrated that initial temperature of droplet and humidity of gas flow are defining factors in transitional phase changes. However, initial droplet temperature had no effect on the equilibrium evaporation regime. The experiments performed confirmed that humidification of atmospheric air flow causes changes in magnitude of heating and phase change process of water droplets suspended in the air flow. These changes translate into increased temperature of equilibrium evaporation of the droplet, formation of favorable conditions for the condensation regime, and a change in dynamics of the droplet's geometrical parameters in initial stage of phase changes. In additionally humidified air flow, the droplet volume increased by three percent, and evaporation temperature of the droplet increased by 17 °C. Practical recommendations for water injection were produced to ensure optimal heat recovery from wet exhaust gases in a condensing economizer.

Suggested Citation

  • Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Ragaišis, Valdas & Paukštaitis, Linas & Jouhara, Hussam & Mingilaitė, Laura, 2022. "Experimental investigations of water droplet transient phase changes in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015468
    DOI: 10.1016/j.energy.2022.124643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miliauskas, G. & Maziukienė, M. & Jouhara, H. & Poškas, R., 2019. "Investigation of mass and heat transfer transitional processes of water droplets in wet gas flow in the framework of energy recovery technologies for biofuel combustion and flue gas removal," Energy, Elsevier, vol. 173(C), pages 740-754.
    2. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    3. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    4. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    5. Block Novelo, David Alejandro & Igie, Uyioghosa & Prakash, Vinod & Szymański, Artur, 2019. "Experimental investigation of gas turbine compressor water injection for NOx emission reductions," Energy, Elsevier, vol. 176(C), pages 235-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Dulin & Andrey Cherdantsev & Roman Volkov & Dmitriy Markovich, 2023. "Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena," Energies, MDPI, vol. 16(4), pages 1-27, February.
    2. Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Poškas, Povilas & Balčius, Algimantas & Jouhara, Hussam, 2022. "The modeling of transient phase changes of water droplets in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Poškas, Povilas & Balčius, Algimantas & Jouhara, Hussam, 2022. "The modeling of transient phase changes of water droplets in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 257(C).
    2. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    3. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    4. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    5. Asadollahi, Arash & Esmaeeli, Asghar, 2018. "Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 33-49.
    6. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    7. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    8. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    9. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    10. Dobersek, Danijela & Goricanec, Darko, 2014. "An experimentally evaluated magnetic device's efficiency for water-scale reduction on electric heaters," Energy, Elsevier, vol. 77(C), pages 271-278.
    11. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    12. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    13. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    14. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    15. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    16. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    17. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    18. Scotti, Gianmario & Kanninen, Petri & Matilainen, Ville-Pekka & Salminen, Antti & Kallio, Tanja, 2016. "Stainless steel micro fuel cells with enclosed channels by laser additive manufacturing," Energy, Elsevier, vol. 106(C), pages 475-481.
    19. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    20. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.