IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032217.html
   My bibliography  Save this article

Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage

Author

Listed:
  • Wang, Kai
  • Yan, Ting
  • Zhao, Y.M.
  • Li, G.D.
  • Pan, W.G.

Abstract

A novel palmitic acid @ZnO/Expanded graphite composite phase change material (PCM) was prepared. Palmitic acid (PA) was selected as phase change material and ZnO/Expanded Graphite as supporting material. Expanded graphite (EG), which was used to improve the thermal conductivity of PCM, was chemically modified using ZnO derived from ZIF-8. ZnO derived from ZIF-8 has abundant pore structure and large specific surface area. The structure of ZnO/EG additive was characterized by SEM analyzing method. The prepared ZnO/EG has a three-dimensional coupled network and hierarchical porous structure. Meanwhile, EG can effectively prevent the structural collapse and aggregation of Metal-Organic Framework (MOF) derivatives. The morphology and thermal properties of composite PCMs were analyzed with SEM, XRD, FTIR, DSC, TG, and DTG. The melting/solidifying temperatures and corresponding latent heats of composite PCM PA@ZnO/EG-6% are 60.38 °C and 58.46 °C, and 203.35 kJ/kg and 207.87 kJ/kg. Thermal conductivity of the composite PCM PA@ZnO/EG-6% increases by 137.5% than that of PA. The DTG results indicated the composite PCM has superior thermal stability. All test results suggested that this composite is a good PCM and has excellent potential in heat storage due to its excellent thermal properties, good thermal stability, and reliability.

Suggested Citation

  • Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032217
    DOI: 10.1016/j.energy.2021.122972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process," Energy, Elsevier, vol. 80(C), pages 177-189.
    2. Mehrali, Mohammad & Tahan Latibari, Sara & Mehrali, Mehdi & Mahlia, Teuku Meurah Indra & Sadeghinezhad, Emad & Metselaar, Hendrik Simon Cornelis, 2014. "Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage," Applied Energy, Elsevier, vol. 135(C), pages 339-349.
    3. Liu, Huan & Wang, Xiaodong & Wu, Dezhen & Ji, Shengfu, 2019. "Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation," Energy, Elsevier, vol. 172(C), pages 599-617.
    4. Takashi Uemura & Nobuhiro Yanai & Satoshi Watanabe & Hideki Tanaka & Ryohei Numaguchi & Minoru T. Miyahara & Yusuke Ohta & Masataka Nagaoka & Susumu Kitagawa, 2010. "Unveiling thermal transitions of polymers in subnanometre pores," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    5. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1801-1809.
    6. Li, Chuanchang & Xie, Baoshan & He, Zhangxing & Chen, Jian & Long, Yi, 2019. "3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 140(C), pages 862-873.
    7. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process," Energy, Elsevier, vol. 79(C), pages 337-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    2. Cheng, Jiaji & Kang, Moyun & Liu, Yuqi & Niu, Shaoshuai & Guan, Yu & Qu, Wenjuan & Li, Shaoxiang, 2022. "The preparation and characterization of thermal expansion capric acid microcapsules for controlling temperature," Energy, Elsevier, vol. 261(PB).
    3. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    3. Gu, Xiaobin & Liu, Peng & Bian, Liang & He, Huichao, 2019. "Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 833-841.
    4. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    5. Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
    6. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    7. Matthias Singer & Michael Fischlschweiger & Tim Zeiner, 2023. "Investigation of the Heat Storage Capacity and Storage Dynamics of a Novel Polymeric Macro-Encapsulated Core-Shell Particle Using a Paraffinic Core," Energies, MDPI, vol. 16(2), pages 1-14, January.
    8. Lv, Laiquan & Wang, Jiankang & Ji, Mengting & Zhang, Yize & Huang, Shengyao & Cen, Kefa & Zhou, Hao, 2022. "Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms," Renewable Energy, Elsevier, vol. 195(C), pages 1238-1252.
    9. Kirincic, Mateo & Trp, Anica & Lenic, Kristian, 2021. "Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models," Renewable Energy, Elsevier, vol. 179(C), pages 1329-1344.
    10. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    11. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    12. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    13. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
    14. Song, Yanlin & Zhang, Nan & Jing, Yaoge & Cao, Xiaoling & Yuan, Yanping & Haghighat, Fariborz, 2019. "Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage," Energy, Elsevier, vol. 189(C).
    15. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    16. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    17. Merlin, Kevin & Soto, Jérôme & Delaunay, Didier & Traonvouez, Luc, 2016. "Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage," Applied Energy, Elsevier, vol. 183(C), pages 491-503.
    18. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    19. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    20. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.