IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021806.html
   My bibliography  Save this article

The preparation and characterization of thermal expansion capric acid microcapsules for controlling temperature

Author

Listed:
  • Cheng, Jiaji
  • Kang, Moyun
  • Liu, Yuqi
  • Niu, Shaoshuai
  • Guan, Yu
  • Qu, Wenjuan
  • Li, Shaoxiang

Abstract

Although the microencapsulation technology can encapsulate the organic phase change materials (PCMs), the vaporized PCMs break the microencapsulation at a high temperature and can be ignited before the polymer materials, which contributes to the fire spread. The thermal expansion capric acid (CA) microcapsules (TCAMs) were successfully fabricated based on polyurethane/polyacrylate in this study, which can prevent the capric acid from escaping at a high temperature and increase the temperature control ability. The results indicated that the diameter of TCAMs after heat treatment increases from 100 μm to 400 μm. The vaporized capric acid broke the microcapsule between 220 °C and 280 °C. Although the phase change behavior of TCAMs was similar to that of normal microcapsules, the residues of TCAMs after heat treatment were much higher. The result from small room model test also proved that the TCAMs have more robust and stable temperature control ability. Because the capric acid containing high content of C and H contributed to the combustion of composite, the normal microcapsules increased the heat release rate of the composite to 366.27 kW/m2, while the heat release rate of the composite containing TCAMs was 332.88 kW/m2 because the thermal expansion shell prevented liquid and vaporized CA from leaking.

Suggested Citation

  • Cheng, Jiaji & Kang, Moyun & Liu, Yuqi & Niu, Shaoshuai & Guan, Yu & Qu, Wenjuan & Li, Shaoxiang, 2022. "The preparation and characterization of thermal expansion capric acid microcapsules for controlling temperature," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021806
    DOI: 10.1016/j.energy.2022.125296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Tianhao & Humire, Emma Nyholm & Trevisan, Silvia & Ignatowicz, Monika & Sawalha, Samer & Chiu, Justin NW., 2022. "Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation," Energy, Elsevier, vol. 238(PB).
    2. Tan, Pepe & Lindberg, Patrik & Eichler, Kaia & Löveryd, Per & Johansson, Pär & Kalagasidis, Angela Sasic, 2020. "Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building," Applied Energy, Elsevier, vol. 276(C).
    3. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    4. Zhang, Li & Yang, Wenbin & Jiang, Zhuoni & He, Fangfang & Zhang, Kai & Fan, Jinghui & Wu, Juying, 2017. "Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance," Applied Energy, Elsevier, vol. 197(C), pages 354-363.
    5. Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
    6. Cheng, Jiaji & Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Zhang, Feng & Qu, Wenjuan & Guan, Yu & Li, Shaoxiang, 2022. "The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes," Energy, Elsevier, vol. 240(C).
    7. Jurčević, Mišo & Nižetić, Sandro & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan & Giama, Effrosyni & Papadopoulos, Agis, 2022. "Techno-economic and environmental evaluation of photovoltaic-thermal collector design with pork fat as phase change material," Energy, Elsevier, vol. 254(PB).
    8. Huang, Yi-Huan & Cheng, Yi-Xin & Zhao, Rui & Cheng, Wen-Long, 2020. "A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
    2. Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Lin, Wei & Liang, Chenchen & Zhao, Yiqiang & Cheng, Jiaji, 2023. "The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    3. Wang, Jianjun & Liu, Fang & Li, Li & Zhang, Jian, 2022. "More than innovativeness: Comparing residents’ motivations for participating renewable energy communities in different innovation segments," Renewable Energy, Elsevier, vol. 197(C), pages 552-563.
    4. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    5. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    6. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    7. Lin, Boqiang & Qiao, Qiao, 2023. "Exploring the participation willingness and potential carbon emission reduction of Chinese residential green electricity market," Energy Policy, Elsevier, vol. 174(C).
    8. Md. Hasanur Rahman & Liton Chandra Voumik & Md. Jamsedul Islam & Md. Abdul Halim & Miguel Angel Esquivias, 2022. "Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    9. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    10. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    11. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    12. Liu, Yang & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does energy aid mitigate the recipient countries’ carbon emissions?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 359-375.
    13. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    14. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    17. Wei Wei & Ling He & Xiaofan Li & Qi Cui & Hao Chen, 2022. "The Effectiveness and Trade-Offs of Renewable Energy Policies in Achieving the Dual Decarbonization Goals in China: A Dynamic Computable General Equilibrium Analysis," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    18. Wang, Yongpei & Yan, Qing & Luo, Yifei & Zhang, Qian, 2023. "Carbon abatement of electricity sector with renewable energy deployment: Evidence from China," Renewable Energy, Elsevier, vol. 210(C), pages 1-11.
    19. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    20. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.