IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014274.html
   My bibliography  Save this article

How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective

Author

Listed:
  • Jia, Zhijie
  • Lin, Boqiang

Abstract

Nowadays, coal consumption is still dominated in China's energy structure, while China aggressively wants to achieve the goal of carbon neutrality in 2060. The substitution of coal consumption will be the first step to the goal. This paper simulates the scenarios of coal resource tax and investment in renewables by applying China Energy-Environment-Economy Analysis (CEEEA/CGE) model. The simulation results show the different mechanisms between the tax and the investment. In general, the impact of coal resource tax comes relatively early and is an effective way to reduce coal consumption in the short term. Renewable energy investment is a long-term, slow, and fundamental way to substitute coal consumption. However, for a long time, renewable energy should be the main driving force of carbon emission reduction. Consequently, we suggest that the process of coal substitution can be carried out through the way of “tax priority in the early stage and investment in the later stage”.

Suggested Citation

  • Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014274
    DOI: 10.1016/j.energy.2021.121179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    2. Fadly, Dalia, 2019. "Low-carbon transition: Private sector investment in renewable energy projects in developing countries," World Development, Elsevier, vol. 122(C), pages 552-569.
    3. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    4. Jan Ivar Korsbakken & Glen P. Peters & Robbie M. Andrew, 2016. "Uncertainties around reductions in China’s coal use and CO2 emissions," Nature Climate Change, Nature, vol. 6(7), pages 687-690, July.
    5. Liu, Huihui & Chen, ZhanMing & Wang, Jianliang & Fan, Jihong, 2017. "The impact of resource tax reform on China's coal industry," Energy Economics, Elsevier, vol. 61(C), pages 52-61.
    6. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2015. "The impact on regional “resource curse” by coal resource tax reform in China—A dynamic CGE appraisal," Resources Policy, Elsevier, vol. 45(C), pages 277-289.
    7. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2018. "The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model," Resources Policy, Elsevier, vol. 58(C), pages 268-276.
    8. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
    9. Wu, Ting & Yang, Shuwang & Tan, Jingjing, 2020. "Impacts of government R&D subsidies on venture capital and renewable energy investment -- an empirical study in China," Resources Policy, Elsevier, vol. 68(C).
    10. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    11. Boute, Anatole, 2020. "Regulatory stability and renewable energy investment: The case of Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    13. Rob Hart, 2019. "To Everything There Is a Season: Carbon Pricing, Research Subsidies, and the Transition to Fossil-Free Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(2), pages 349-389.
    14. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    15. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    16. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    17. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    18. Zhang, Shuangqi & Deng, Mengsi & Shan, Ming & Zhou, Chuang & Liu, Wei & Xu, Xiaoqiu & Yang, Xudong, 2019. "Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China," Energy Policy, Elsevier, vol. 128(C), pages 654-664.
    19. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    20. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
    21. Özdemir, Özge & Hobbs, Benjamin F. & van Hout, Marit & Koutstaal, Paul R., 2020. "Capacity vs energy subsidies for promoting renewable investment: Benefits and costs for the EU power market," Energy Policy, Elsevier, vol. 137(C).
    22. Chen, Han & Chen, Wenying, 2019. "Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China's building sector during the 13th Five-Year Plan period," Energy Policy, Elsevier, vol. 131(C), pages 281-294.
    23. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    24. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
    25. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    26. Boqiang Lin & Zhijie Jia, 2020. "Can Carbon Tax Complement Emission Trading Scheme? The Impact Of Carbon Tax On Economy, Energy And Environment In China," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-29, August.
    27. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    28. Jiandong Chen & Ming Gao & Ding Li & Malin Song, 2020. "Analysis of the rebound effects of fossil and nonfossil energy in China based on sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 235-246, January.
    29. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    30. Jiandong Chen & Ming Gao & Ke Ma & Malin Song, 2020. "Different effects of technological progress on China's carbon emissions based on sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 481-492, February.
    31. Niu, Dong-xiao & Song, Zong-yun & Xiao, Xin-li, 2017. "Electric power substitution for coal in China: Status quo and SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 610-622.
    32. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    33. Heiskanen, Eva & Jalas, Mikko & Juntunen, Jouni K. & Nissilä, Heli, 2017. "Small streams, diverse sources: Who invests in renewable energy in Finland during the financial downturn?," Energy Policy, Elsevier, vol. 106(C), pages 191-200.
    34. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    35. Liu, Xiaoran & Ronn, Ehud I., 2020. "Using the binomial model for the valuation of real options in computing optimal subsidies for Chinese renewable energy investments," Energy Economics, Elsevier, vol. 87(C).
    36. Chen, Jiandong & Gao, Ming & Mangla, Sachin Kumar & Song, Malin & Wen, Jie, 2020. "Effects of technological changes on China's carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    37. Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).
    38. Yang, Xiaolei & He, Lingyun & Xia, Yufei & Chen, Yufeng, 2019. "Effect of government subsidies on renewable energy investments: The threshold effect," Energy Policy, Elsevier, vol. 132(C), pages 156-166.
    39. Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2017. "Financial stability at risk due to investing rapidly in renewable energy," Energy Policy, Elsevier, vol. 108(C), pages 12-20.
    40. Tang, Ling & Shi, Jiarui & Yu, Lean & Bao, Qin, 2017. "Economic and environmental influences of coal resource tax in China: A dynamic computable general equilibrium approach," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 34-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    2. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    3. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    4. Lin, Boqiang & Li, Minyang, 2022. "Understanding the investment of renewable energy firms in the face of economic policy uncertainty – Micro-evidence from listed companies in China," China Economic Review, Elsevier, vol. 75(C).
    5. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
    6. Wang, Qunwei & Fan, Zining, 2023. "Green finance and investment behavior of renewable energy enterprises: A case study of China," International Review of Financial Analysis, Elsevier, vol. 87(C).
    7. Song, Yi & Zhang, Yangxueying & Zhang, Yijun, 2022. "Economic and environmental influences of resource tax: Firm-level evidence from China," Resources Policy, Elsevier, vol. 77(C).
    8. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    9. Shafiullah, Muhammad & Miah, Mohammad Dulal & Alam, Md Samsul & Atif, Muhammad, 2021. "Does economic policy uncertainty affect renewable energy consumption?," Renewable Energy, Elsevier, vol. 179(C), pages 1500-1521.
    10. Boqiang Lin & Siquan Wang, 2023. "Mechanism analysis of the influence of oil price uncertainty on strategic investment of renewable energy enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 4176-4193, October.
    11. Weijiang Liu & Min Liu & Tingting Liu & Yangyang Li & Yizhe Hao, 2022. "Does a Recycling Carbon Tax with Technological Progress in Clean Electricity Drive the Green Economy?," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    12. Liu, Xin & Wang, Ping & Song, Hang & Zeng, Xiaoying, 2021. "Determinants of net primary productivity: Low-carbon development from the perspective of carbon sequestration," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    13. Jiang, Wei & Sun, Yifei, 2023. "Which is the more important factor of carbon emission, coal consumption or industrial structure?," Energy Policy, Elsevier, vol. 176(C).
    14. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    15. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    16. Li, Yuan & Zhou, You & Yi, Bo-Wen & Wang, Ya, 2021. "Impacts of the coal resource tax on the electric power industry in China: A multi-regional comprehensive analysis," Resources Policy, Elsevier, vol. 70(C).
    17. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    18. Wang, Yongli & Zhou, Minhan & Zhang, Fuli & Zhang, Yuli & Ma, Yuze & Dong, Huanran & Zhang, Danyang & Liu, Lin, 2021. "Chinese grid investment based on transmission and distribution tariff policy: An optimal coordination between capacity and demand," Energy, Elsevier, vol. 219(C).
    19. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    20. Lin, Boqiang & Jia, Zhijie, 2019. "How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China?," Energy Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.