IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221010872.html
   My bibliography  Save this article

Energy supply and storage optimization for mixed-type buildings

Author

Listed:
  • Rikkas, Rebecka
  • Lahdelma, Risto

Abstract

Energy efficiency and renewable energy solutions in buildings is an important and actual research topic. Operating and fixed costs of sustainable energy solutions can be reduced by using optimization models. We developed a novel optimization model and applied it for a mixed-type building with commercial, office, and residential parts in Finland. The model determines the optimal configuration, dimensioning, and operation of different local energy production and storage technologies for power, heat, and cooling. The model is formulated as a large dynamic linear or mixed-integer linear programming model (LP/MILP) for a full year. The result shows that district heating, district cooling, energy storage, heat pumps, and photovoltaics as a hybrid solution for a building can both reduce the combined operating and fixed costs annually by 27100€, and support meeting the nearly Zero Energy Building requirements with E-value limit of 107 kWh/m2/a. Photovoltaics can be profitable when consumed maximally at the building. While heat and cooling storages are cost-efficient for balancing demand and supply, power storages are still too expensive. District heating and heat pump heating worked synergetically together, but district cooling and heat pump cooling were mutually exclusive choices at nearly equal cost.

Suggested Citation

  • Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010872
    DOI: 10.1016/j.energy.2021.120839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    2. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    3. Pylsy, Petri & Lylykangas, Kimmo & Kurnitski, Jarek, 2020. "Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
    5. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    6. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    7. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2019. "Parametric optimization of long-term multi-area heat and power production with power storage," Applied Energy, Elsevier, vol. 235(C), pages 802-812.
    8. Pinamonti, Maria & Baggio, Paolo, 2020. "Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings," Renewable Energy, Elsevier, vol. 157(C), pages 90-99.
    9. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    10. Abdollahi, Elnaz & Lahdelma, Risto, 2020. "Decomposition method for optimizing long-term multi-area energy production with heat and power storages," Applied Energy, Elsevier, vol. 260(C).
    11. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    12. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    13. Haichao Wang & Giulia Di Pietro & Xiaozhou Wu & Risto Lahdelma & Vittorio Verda & Ilkka Haavisto, 2018. "Renewable and Sustainable Energy Transitions for Countries with Different Climates and Renewable Energy Sources Potentials," Energies, MDPI, vol. 11(12), pages 1-32, December.
    14. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    15. Stephen Comello & Stefan Reichelstein, 2019. "The emergence of cost effective battery storage," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    3. Gonzalez-Salazar, Miguel & Klossek, Julia & Dubucq, Pascal & Punde, Thomas, 2023. "Portfolio optimization in district heating: Merit order or mixed integer linear programming?," Energy, Elsevier, vol. 265(C).
    4. Chinese, D. & Orrù, P.F. & Meneghetti, A. & Cortella, G. & Giordano, L. & Benedetti, M., 2022. "Symbiotic and optimized energy supply for decarbonizing cheese production: An Italian case study," Energy, Elsevier, vol. 257(C).
    5. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    6. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    7. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    3. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    4. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    5. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    6. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    7. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.
    8. Shang, Ce & Ge, Yuyou & Zhai, Suwei & Huo, Chao & Li, Wenyun, 2023. "Combined heat and power storage planning," Energy, Elsevier, vol. 279(C).
    9. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    10. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    11. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    12. Abdollahi, Elnaz & Lahdelma, Risto, 2020. "Decomposition method for optimizing long-term multi-area energy production with heat and power storages," Applied Energy, Elsevier, vol. 260(C).
    13. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    15. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    16. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    17. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    18. Khosravi, Fatemeh & Lowes, Richard & Ugalde-Loo, Carlos E., 2023. "Cooling is hotting up in the UK," Energy Policy, Elsevier, vol. 174(C).
    19. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    20. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.