IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220319204.html
   My bibliography  Save this article

Optimal design and management of distributed energy network considering both efficiency and fairness

Author

Listed:
  • Ren, Hongbo
  • Wu, Qiong
  • Li, Qifen
  • Yang, Yongwen

Abstract

In this paper, based on the principle of complementation, interaction and mutual benefit of distributed energy prosumers, an integrated analytical framework considering both overall efficiency and individual fairness is proposed for the optimal decision-making of the distributed energy network integrating both electric and thermal interchanges. Firstly, from the viewpoint of overall efficiency, a collaborative optimization model is developed for the determination of system configuration, operating strategy, as well as layout of energy interchanging network. Following which, from the viewpoint of fairness of prosumers, a profit allocation model is proposed based on the cooperative game theory. By employing the Core and Shapely Value methods, the corresponding profit allocation measure can be determined while considering both aspects of stability and fairness. According to the simulation results of a numerical study, the energy interchange among prosumers may result in not only economic, but also energy and environmental benefits compared with the situation without energy interaction. In addition, by employing the Shapely value method, a sole profit allocation strategy can be determined based on the contribution of each prosumer on the whole network, which may achieve a win-win result of both individual and overall interests.

Suggested Citation

  • Ren, Hongbo & Wu, Qiong & Li, Qifen & Yang, Yongwen, 2020. "Optimal design and management of distributed energy network considering both efficiency and fairness," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319204
    DOI: 10.1016/j.energy.2020.118813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    2. Ulrich Faigle & Michel Grabisch & Andres Jiménez-Losada & Manuel Ordóñez, 2014. "Games on concept lattices: Shapley value and core," Documents de travail du Centre d'Economie de la Sorbonne 14070, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    4. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    5. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    6. Zhang, Di & Samsatli, Nouri J. & Hawkes, Adam D. & Brett, Dan J.L. & Shah, Nilay & Papageorgiou, Lazaros G., 2013. "Fair electricity transfer price and unit capacity selection for microgrids," Energy Economics, Elsevier, vol. 36(C), pages 581-593.
    7. Schweiger, Gerald & Heimrath, Richard & Falay, Basak & O'Donovan, Keith & Nageler, Peter & Pertschy, Reinhard & Engel, Georg & Streicher, Wolfgang & Leusbrock, Ingo, 2018. "District energy systems: Modelling paradigms and general-purpose tools," Energy, Elsevier, vol. 164(C), pages 1326-1340.
    8. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    9. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    10. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    11. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    12. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    13. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    14. Sameti, Mohammad & Haghighat, Fariborz, 2019. "Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power," Renewable Energy, Elsevier, vol. 130(C), pages 371-387.
    15. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    16. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    17. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.
    18. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).
    2. Li, Mengjie & Du, Weijian, 2021. "Can Internet development improve the energy efficiency of firms: Empirical evidence from China," Energy, Elsevier, vol. 237(C).
    3. Lee, Minwoo & Han, Changho & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and cost savings through heat trading between two massive prosumers using solar and ground energy systems connected to district heating networks," Energy, Elsevier, vol. 284(C).
    4. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Lozano, Miguel A. & Serra, Luis M. & Pina, Eduardo A., 2022. "Optimal design of trigeneration systems for buildings considering cooperative game theory for allocating production cost to energy services," Energy, Elsevier, vol. 261(PB).
    7. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    3. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    4. Fuentes González, Fabián & van der Weijde, Adriaan Hendrik & Sauma, Enzo, 2020. "The promotion of community energy projects in Chile and Scotland: An economic approach using biform games," Energy Economics, Elsevier, vol. 86(C).
    5. Jing, Rui & Wang, Meng & Zhang, Zhihui & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2019. "Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Miao Li & Yiran Feng & Maojun Zhou & Hailin Mu & Longxi Li & Yajun Wang, 2019. "Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network," Energies, MDPI, vol. 12(10), pages 1-19, May.
    7. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    8. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    11. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2018. "A novel optimization model based on game tree for multi-energy conversion systems," Energy, Elsevier, vol. 150(C), pages 109-121.
    12. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    13. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    14. Wang, Can & Yan, Chao & Li, Gengfeng & Liu, Shiyu & Bie, Zhaohong, 2020. "Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game," Energy, Elsevier, vol. 198(C).
    15. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    16. Kubli, Merla & Puranik, Sanket, 2023. "A typology of business models for energy communities: Current and emerging design options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    18. Lucas Roth & Jens Lowitzsch & Özgür Yildiz, 2021. "An Empirical Study of How Household Energy Consumption Is Affected by Co-Owning Different Technological Means to Produce Renewable Energy and the Production Purpose," Energies, MDPI, vol. 14(13), pages 1-38, July.
    19. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    20. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.