IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544220300165.html
   My bibliography  Save this article

Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009

Author

Listed:
  • Kulionis, Viktoras
  • Wood, Richard

Abstract

The decoupling of energy use from economic growth is an essential element in the transition to a sustainable future. However, little is known about the long-term drivers of decoupling, especially considering the possibility that it is at least partially due to increased trade. This study uses structural decomposition analysis to examine the main factors that contribute to changes in the energy footprint of Denmark, the United Kingdom, France and the United States of America back to 1970. The results show that the changes in energy footprint have been driven mainly by two countervailing forces: declines in energy intensity and increases in consumption per capita. Energy efficiency improvements that take place abroad play an increasingly important role. In recent years they accounted for a greater share of the reduction in energy footprint than domestic energy efficiency improvements. The trade sourcing effect was negligible in the beginning of the study period but has grown in importance since 1995 and accelerated the growth of the energy footprint by roughly 0.5% per year. Whilst the electricity sector has clearly played the dominant role, the contribution of factor changes in services and manufacturing should not be overlooked.

Suggested Citation

  • Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300165
    DOI: 10.1016/j.energy.2020.116909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    2. Stavros Afionis & Marco Sakai & Kate Scott & John Barrett & Andy Gouldson, 2017. "Consumption‐based carbon accounting: does it have a future?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(1), January.
    3. Corinne Le Quéré & Jan Ivar Korsbakken & Charlie Wilson & Jale Tosun & Robbie Andrew & Robert J. Andres & Josep G. Canadell & Andrew Jordan & Glen P. Peters & Detlef P. van Vuuren, 2019. "Drivers of declining CO2 emissions in 18 developed economies," Nature Climate Change, Nature, vol. 9(3), pages 213-217, March.
    4. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    5. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    6. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
    7. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    8. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    9. Shigemi Kagawa & Hajime Inamura, 2004. "A Spatial Structural Decomposition Analysis of Chinese and Japanese Energy Demand: 1985-1990," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 279-299.
    10. Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
    11. Richard Wood & Konstantin Stadler & Moana Simas & Tatyana Bulavskaya & Stefan Giljum & Stephan Lutter & Arnold Tukker, 2018. "Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 553-564, June.
    12. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    13. Serrano, Mònica & Dietzenbacher, Erik, 2010. "Responsibility and trade emission balances: An evaluation of approaches," Ecological Economics, Elsevier, vol. 69(11), pages 2224-2232, September.
    14. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    15. Manfred Lenzen, 2016. "Structural analyses of energy use and carbon emissions -- an overview," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 119-132, June.
    16. Rose, A. & Chen, C. Y., 1991. "Sources of change in energy use in the U.S. economy, 1972-1982 : A structural decomposition analysis," Resources and Energy, Elsevier, vol. 13(1), pages 1-21, April.
    17. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    18. Caroline Hambÿe & Bart Hertveldt & Bernhard Michel, 2018. "Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposi," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-22, December.
    19. Robbie Andrew & Glen Peters & James Lennox, 2009. "Approximation And Regional Aggregation In Multi-Regional Input-Output Analysis For National Carbon Footprint Accounting," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 311-335.
    20. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    21. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    22. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    23. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    2. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Song & Wang, Zhenpo, 2023. "Identifying the key factors to China's unsustainable external circulation through the accounting of the flow of embodied energy and virtual water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
    4. Ruan, Fang-Li & Yan, Liang, 2022. "Interactions among electricity consumption, disposable income, wastewater discharge, and economic growth: Evidence from megacities in China from 1995 to 2018," Energy, Elsevier, vol. 260(C).
    5. Abdul Rehman & Magdalena Radulescu & Hengyun Ma & Vishal Dagar & Imran Hussain & Muhammad Kamran Khan, 2021. "The Impact of Globalization, Energy Use, and Trade on Ecological Footprint in Pakistan: Does Environmental Sustainability Exist?," Energies, MDPI, vol. 14(17), pages 1-16, August.
    6. Lisbeth Weitensfelder & Hanns Moshammer & Oral Ataniyazova, 2024. "Energy Consumption, Energy Distribution, and Clean Energy Use Together Affect Life Expectancy," Sustainability, MDPI, vol. 16(2), pages 1-11, January.
    7. Xia, Quanzhi & Han, Mengyao & Guan, Shihui & Wu, Xiaofang & Zhang, Bo, 2022. "Tracking embodied energy flows of China's megacities via multi-scale supply chains," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    2. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    3. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    4. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    5. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    6. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    7. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    8. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    9. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    10. K. Shironitta, 2016. "Global structural changes and their implication for territorial CO2 emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-18, December.
    11. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    12. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    13. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    14. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    15. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    17. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    18. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    20. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.