IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp74-87.html
   My bibliography  Save this article

Estimating the value of demand-side management in low-cost, solar micro-grids

Author

Listed:
  • Mehra, Varun
  • Amatya, Reja
  • Ram, Rajeev J.

Abstract

Demand-side management has the potential to reduce the cost of solar based community micro-grids and solar home systems for electricity access. This paper presents a methodology for optimal least-cost sizing of generation assets while meeting explicit reliability constraints in micro-grids that are capable of active demand management. The battery management model considers kinetic constraints on battery operation and represents dispatch in the field to regulate the depth of discharge. The model allows consideration of the trade-off between depth of discharge, cycle life, and calendar lifetime in lead-acid batteries. Separate reliability targets for disaggregated, residential load profiles at hourly timesteps are considered to evaluate the performance and cost reduction potential of demand-side management capabilities — with economic results and sensitivity analyses around key input assumptions subsequently presented. We find that demand-side management can reduce the number and cost of requisite solar panels and batteries with the integration of real-time management and controls – a key result for justifying next generation micro-grids for electricity access.

Suggested Citation

  • Mehra, Varun & Amatya, Reja & Ram, Rajeev J., 2018. "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, Elsevier, vol. 163(C), pages 74-87.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:74-87
    DOI: 10.1016/j.energy.2018.07.204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akinyele, Daniel O. & Rayudu, Ramesh K., 2016. "Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries," Energy, Elsevier, vol. 109(C), pages 160-179.
    2. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    3. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
    4. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    5. Lee, Mitchell & Soto, Daniel & Modi, Vijay, 2014. "Cost versus reliability sizing strategy for isolated photovoltaic micro-grids in the developing world," Renewable Energy, Elsevier, vol. 69(C), pages 16-24.
    6. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    7. Peter Meier & Maria Vagliasindi & Mudassar Imran & Anton Eberhard & Tilak Siyambalapitiya, 2015. "The Design and Sustainability of Renewable Energy Incentives : An Economic Analysis," World Bank Publications - Books, The World Bank Group, number 20524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Oviedo Cepeda & German Osma-Pinto & Robin Roche & Cesar Duarte & Javier Solano & Daniel Hissel, 2020. "Design of a Methodology to Evaluate the Impact of Demand-Side Management in the Planning of Isolated/Islanded Microgrids," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    3. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    4. Zhuang, Ran & Jiang, Difei & Wang, Yuan, 2023. "An approach to optimize building area ratios scheme of urban complex in different climatic conditions based on comprehensive energy performance evaluation," Applied Energy, Elsevier, vol. 329(C).
    5. Cui, Qiong & Ma, Peipei & Huang, Lei & Shu, Jie & Luv, Jie & Lu, Lin, 2020. "Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads," Applied Energy, Elsevier, vol. 275(C).
    6. Wale Arewolo & Philipp Blechinger & Catherina Cader & Yannick Perez, 2019. "Seeking workable solutions to the electrification challenge in Nigeria: Minigrid, reverse auctions and institutional adaptation," Post-Print halshs-01989683, HAL.
    7. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    8. Xu, Fangyuan & Wu, Wanli & Zhao, Fei & Zhou, Ya & Wang, Yongjian & Wu, Runji & Zhang, Tao & Wen, Yongchen & Fan, Yiliang & Jiang, Shengli, 2019. "A micro-market module design for university demand-side management using self-crossover genetic algorithms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Wang, Huaizhi & Meng, Anjian & Liu, Yitao & Fu, Xueqian & Cao, Guangzhong, 2019. "Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack," Energy, Elsevier, vol. 188(C).
    10. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    11. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.
    12. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Chamarande & S. Mathy & B. Hingray, 2022. "The least cost design of 100% solar power microgrids in Africa: sensitivity to meteorological and economic drivers and possibility for simple pre-sizing rules," Post-Print hal-03740059, HAL.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    4. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    5. Hamza Abunima & Jiashen Teh & Ching-Ming Lai & Hussein Jumma Jabir, 2018. "A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions," Energies, MDPI, vol. 11(9), pages 1-37, September.
    6. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    7. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    8. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    9. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    10. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    11. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    12. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    13. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    15. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    16. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    17. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    18. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    19. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    20. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:74-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.