IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp180-190.html
   My bibliography  Save this article

Combustion behavior of coal pellets blended with Miscanthus biochar

Author

Listed:
  • Li, Yueh-Heng
  • Lin, Hsien-Tsung
  • Xiao, Kai-Lin
  • Lasek, Janusz

Abstract

To achieve reductions in CO2 emissions, replacing fossil fuels with biomass in thermal power generation is becoming increasingly prevalent. In general, the fuel nature and combustion characteristics of biomass are distinct from those of fossil fuels. Biomass is typically subjected to torrefaction to improve its grindability, hydrophobicity, and heating value (HV). However, the pretreatment process is accompanied by fuel property alteration and an energy penalty. This is strongly associated with the operating envelope and combustion stability of biochar cofiring with coal. Therefore, in this study, the Taguchi method was used to calculate the optimal torrefaction parameters for maximum energy yield and HV. Thermogravimetric and fuel characteristic analyses were performed to examine the pyrolysis features and combustion behavior of the studied fuels. In addition, a blend of 50% Miscanthus biochar and 50% Australia coal was produced and pressed into pellets. The pellets were placed into a free-drop furnace to observe their combustion behavior. The results demonstrated that the ignition temperature and burnout temperature of the blended fuels could be effectively reduced, and that their fuel conversion rates and combustion characteristic index could be enhanced. The results can be applied to coal cofiring in large-scale boilers in the future.

Suggested Citation

  • Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:180-190
    DOI: 10.1016/j.energy.2018.08.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elfasakhany, A. & Tao, L. & Espenas, B. & Larfeldt, J. & Bai, X.S., 2013. "Pulverised wood combustion in a vertical furnace: Experimental and computational analyses," Applied Energy, Elsevier, vol. 112(C), pages 454-464.
    2. Mun, Tae-Young & Tumsa, Tefera Zelalem & Lee, Uendo & Yang, Won, 2016. "Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant," Energy, Elsevier, vol. 115(P1), pages 954-962.
    3. Dong, Changqing & Yang, Yongping & Yang, Rui & Zhang, Junjiao, 2010. "Numerical modeling of the gasification based biomass co-firing in a 600Â MW pulverized coal boiler," Applied Energy, Elsevier, vol. 87(9), pages 2834-2838, September.
    4. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    7. Chen, Guan-Lin & Chen, Guan-Bang & Li, Yueh-Heng & Wu, Wen-Teng, 2014. "A study of thermal pyrolysis for castor meal using the Taguchi method," Energy, Elsevier, vol. 71(C), pages 62-70.
    8. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    9. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    10. Im-orb, Karittha & Wiyaratn, Wisitsree & Arpornwichanop, Amornchai, 2018. "Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion," Energy, Elsevier, vol. 153(C), pages 592-603.
    11. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    12. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    13. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    14. Karampinis, E. & Nikolopoulos, N. & Nikolopoulos, A. & Grammelis, P. & Kakaras, E., 2012. "Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace," Applied Energy, Elsevier, vol. 97(C), pages 514-524.
    15. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    16. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    17. Hu, Ming-Che & Lin, Chun-Hung & Chou, Chun-An & Hsu, Shao-Yiu & Wen, Tzai-Hung, 2011. "Analysis of biomass co-firing systems in Taiwan power markets using linear complementarity models," Energy Policy, Elsevier, vol. 39(8), pages 4594-4600, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    2. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    4. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    5. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    6. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    7. Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
    8. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    9. Fakudze, Sandile & Wei, Yingyuan & Shang, Qianqian & Ma, Ru & Li, Yueh-Heng & Chen, Jianqiang & Zhou, Peiguo & Han, Jiangang & Liu, Chengguo, 2021. "Single-pot upgrading of run-of-mine coal and rice straw via Taguchi-optimized hydrothermal treatment: Fuel properties and synergistic effects," Energy, Elsevier, vol. 236(C).
    10. Lin, Y.L. & Chen, S.T. & Zheng, N.Y. & Wang, H.C., 2023. "Green sludge dewatering and recycling technology for generating renewable energy and liquid nutrients: Bench- and pilot-scale studies," Energy, Elsevier, vol. 278(PB).
    11. Zhang, Yongsheng & Zahid, Ibrar & Danial, Ali & Minaret, Jamie & Cao, Yijun & Dutta, Animesh, 2021. "Hydrothermal carbonization of miscanthus: Processing, properties, and synergistic Co-combustion with lignite," Energy, Elsevier, vol. 225(C).
    12. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    13. Fu, Jie & Mao, Xiao & Siyal, Asif Ali & Liu, Yang & Ao, Wenya & Liu, Guangqing & Dai, Jianjun, 2021. "Pyrolysis of furfural residue pellets: Physicochemical characteristics of pyrolytic pellets and pyrolysis kinetics," Renewable Energy, Elsevier, vol. 179(C), pages 2136-2146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    2. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    3. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
    4. Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
    5. Liang, Zhanwei & Chen, Hongwei & Zhao, Bin & Jia, Jiandong & Cheng, Kai, 2018. "Synergetic effects of firing gases/coal blends and adopting deep air staging on combustion characteristics," Applied Energy, Elsevier, vol. 228(C), pages 499-511.
    6. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    7. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    8. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    9. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    10. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    11. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    12. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    13. Li, Zixiang & Miao, Zhengqing & Han, Baoju & Qiao, Xinqi, 2022. "Effects of the number of wall mounted burners on performance of a 660 MW tangentially fired lignite boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 255(C).
    14. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    15. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    16. Kang, Panxing & Zhang, Guangyi & Ge, Zefeng & Zha, Zhenting & Zhang, Huiyan, 2022. "Three-dimensional modelling and optimization of an industrial dual fluidized bed biomass gasification decoupling combustion reactor," Applied Energy, Elsevier, vol. 311(C).
    17. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    18. Ling Zhu & Ya Mao & Kang Liu & Chengguang Tong & Quan Liu & Qiang Xie, 2024. "The Co-Processing Combustion Characteristics of Municipal Sludge within an Industrial Cement Decomposition Furnace via Computational Fluid Dynamics," Mathematics, MDPI, vol. 12(1), pages 1-27, January.
    19. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    20. Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:180-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.