IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp286-297.html
   My bibliography  Save this article

Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance

Author

Listed:
  • Cui, Ying
  • Yan, Da
  • Hong, Tianzhen
  • Ma, Jingjin

Abstract

With the increased urbanization in most countries worldwide, the urban heat island (UHI) effect, referring to the phenomenon that an urban area has higher ambient temperature than the surrounding rural area, has gained much attention in recent years. Given that Beijing is developing rapidly both in urban population and economically, the UHI effect can be significant. A long-term measured weather dataset from 1961 to 2014 for ten rural stations and seven urban stations in Beijing, was analyzed in this study, to understand the detailed temporal and spatial characteristics of the UHI in Beijing. The UHI effect in Beijing is significant, with an urban-to-rural temperature difference of up to 8 °C during the winter nighttime. Furthermore, the impacts of UHIs on building design and energy performance were also investigated. The UHI in Beijing led to an approximately 11% increase in cooling load and 16% decrease in heating load in the urban area compared with the rural area, whereas the urban heating peak load decreased 9% and the cooling peak load increased 7% because of the UHI effect. This study provides insights into the UHI in Beijing and recommendations to improve building design and decision-making while considering the urban microclimate.

Suggested Citation

  • Cui, Ying & Yan, Da & Hong, Tianzhen & Ma, Jingjin, 2017. "Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance," Energy, Elsevier, vol. 130(C), pages 286-297.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:286-297
    DOI: 10.1016/j.energy.2017.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank & the People’s Republic of China Development Research Center of the State Council, 2014. "Urban China : Toward Efficient, Inclusive, and Sustainable Urbanization," World Bank Publications - Books, The World Bank Group, number 18865, December.
    2. Assimakopoulos, M.N. & Mihalakakou, G. & Flocas, H.A., 2007. "Simulating the thermal behaviour of a building during summer period in the urban environment," Renewable Energy, Elsevier, vol. 32(11), pages 1805-1816.
    3. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Spyrou & Byron Ioannou & Manolis Souliotis & Andreas L. Savvides & Paris A. Fokaides, 2023. "The Adaptability of Cities to Climate Change: Evidence from Cities’ Redesign towards Mitigating the UHI Effect," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    2. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    3. Luxi Jin & Sebastian Schubert & Mohamed Hefny Salim & Christoph Schneider, 2020. "Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    4. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Zhuoran Shan & Yuehui An & L’ei Xu & Man Yuan, 2021. "High-Temperature Disaster Risk Assessment for Urban Communities: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    6. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    7. Patricio Pacheco & Eduardo Mera & Voltaire Fuentes, 2023. "Intensive Urbanization, Urban Meteorology and Air Pollutants: Effects on the Temperature of a City in a Basin Geography," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    8. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    10. Meizi You & Riwen Lai & Jiayuan Lin & Zhesheng Zhu, 2021. "Quantitative Analysis of a Spatial Distribution and Driving Factors of the Urban Heat Island Effect: A Case Study of Fuzhou Central Area, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    11. Liang, Chao & Li, Xianting & Shao, Xiaoliang & Li, Baoming, 2020. "Direct relationship between the system cooling load and indoor heat gain in a non-uniform indoor environment," Energy, Elsevier, vol. 191(C).
    12. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    13. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    14. Chia-Ho Wu & Chih-Hong Huang & Yeou-Fong Li & Wei-Hao Lee & Ta-Wui Cheng, 2020. "Utilization of Basic Oxygen Furnace Slag in Geopolymeric Coating for Passive Radiative Cooling Application," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    15. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    16. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    17. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    18. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    2. Ma, Shuang & Mu, Ren, 2020. "Forced off the farm? Farmers’ labor allocation response to land requisition in China," World Development, Elsevier, vol. 132(C).
    3. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    4. John Gibson & Chao Li, 2017. "The Erroneous Use Of China'S Population And Per Capita Data: A Structured Review And Critical Test," Journal of Economic Surveys, Wiley Blackwell, vol. 31(4), pages 905-922, September.
    5. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    6. Lakatos, Csilla & Maliszewska, Maryla & Osorio Rodarte, Israel & Go, Delfin S, 2016. "China’s Slowdown and Rebalancing: Potential Growth and Poverty Impacts on Sub-Saharan Africa," Conference papers 332730, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Murat Arsel & Joshua Muldavin, 2015. "Forum 2015," Development and Change, International Institute of Social Studies, vol. 46(4), pages 993-1009, July.
    8. Roy Bahl, 2017. "Metropolitan city finances in Asia and the Pacific region: issues, problems and reform options," MPDD Working Paper Series WP/17/04, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP).
    9. Liu, Yong & Fan, Peilei & Yue, Wenze & Song, Yan, 2018. "Impacts of land finance on urban sprawl in China: The case of Chongqing," Land Use Policy, Elsevier, vol. 72(C), pages 420-432.
    10. Bosker, Maarten & Deichmann, Uwe & Roberts, Mark, 2018. "Hukou and highways the impact of China's spatial development policies on urbanization and regional inequality," Regional Science and Urban Economics, Elsevier, vol. 71(C), pages 91-109.
    11. Weixuan Chen & Ali Cheshmehzangi & Eugenio Mangi & Timothy Heath, 2022. "Implementations of China’s New-Type Urbanisation: A Comparative Analysis between Targets and Practices of Key Elements’ Policies," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    12. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    13. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    14. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    15. Xiangping Jia, 2020. "Priming the pump of impact entrepreneurship and social finance in China," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1293-1311, December.
    16. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    17. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Wang, Yubo & Su, Yuehong, 2019. "A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 301-312.
    18. Fergus Green & Nicholas Stern, 2017. "China's changing economy: implications for its carbon dioxide emissions," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 423-442, May.
    19. Jingjing Lu & Minmin Jiang & Lu Li & Therese Hesketh, 2019. "Relaxation in the Chinese Hukou System: Effects on Psychosocial Wellbeing of Children Affected by Migration," IJERPH, MDPI, vol. 16(19), pages 1-9, October.
    20. Jiayu Li & Bohong Zheng & Komi Bernard Bedra & Zhe Li & Xiao Chen, 2021. "Evaluating the Effect of Window-to-Wall Ratios on Cooling-Energy Demand on a Typical Summer Day," IJERPH, MDPI, vol. 18(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:286-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.