IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp94-109.html
   My bibliography  Save this article

Profitability, risk, and financial modeling of energy storage in residential and large scale applications

Author

Listed:
  • Berrada, Asmae
  • Loudiyi, Khalid
  • Zorkani, Izeddine

Abstract

The increasing share of renewable energy plants in the power industry portfolio is causing grid instability issues. Energy storage technologies have the ability to revolutionize the way in which the electrical grid is operated. The incorporation of energy storage systems in the grid help reduce this instability by shifting power produced during low energy consumption to peak demand hours and hence balancing energy generation with demand. However, the deployment of some energy storage systems will remain limited until their economic profitability is proven. In this paper, a cost-benefit analysis is performed to determine the economic viability of energy storage used in residential and large scale applications. Revenues from energy arbitrage were identified using the proposed models to get a better view on the profitability of the storage system. Moreover, the feasibility of energy storage projects relies on the readiness of investors to invest in the project. This willingness is significantly affected by several factors such as the risk of the innovative storage concept. To analyse the profitability risk associated with such energy project, a sensitivity analysis is performed in this study.

Suggested Citation

  • Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:94-109
    DOI: 10.1016/j.energy.2016.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hessami, Mir-Akbar & Bowly, David R., 2011. "Economic feasibility and optimisation of an energy storage system for Portland Wind Farm (Victoria, Australia)," Applied Energy, Elsevier, vol. 88(8), pages 2755-2763, August.
    2. Leach, Andrew & Doucet, Joseph & Nickel, Trevor, 2011. "Renewable fuels: Policy effectiveness and project risk," Energy Policy, Elsevier, vol. 39(7), pages 4007-4015, July.
    3. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    4. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
    5. Rangel, Luiz Fernando, 2008. "Competition policy and regulation in hydro-dominated electricity markets," Energy Policy, Elsevier, vol. 36(4), pages 1292-1302, April.
    6. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    7. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    8. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    9. Weron, Rafal, 2000. "Energy price risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 127-134.
    10. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    11. Sovacool, Benjamin K. & Gilbert, Alex & Nugent, Daniel, 2014. "Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses," Energy, Elsevier, vol. 74(C), pages 906-917.
    12. Cucchiella, Federica & D’Adamo, Idiano, 2012. "Feasibility study of developing photovoltaic power projects in Italy: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1562-1576.
    13. MakajiÄ NikoliÄ, Dragana & Jednak, Sandra & BenkoviÄ, SlaÄana & PoznaniÄ, Vladimir, 2011. "Project finance risk evaluation of the Electric power industry of Serbia," Energy Policy, Elsevier, vol. 39(10), pages 6168-6177, October.
    14. Kazempour, S. Jalal & Moghaddam, M. Parsa & Haghifam, M.R. & Yousefi, G.R., 2009. "Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies," Renewable Energy, Elsevier, vol. 34(12), pages 2630-2639.
    15. Reuter, Wolf Heinrich & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael, 2012. "Investment in wind power and pumped storage in a real options model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2242-2248.
    16. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    17. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    18. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    19. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    2. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    3. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    4. Pimm, Andrew J. & Cockerill, Tim T. & Taylor, Peter G. & Bastiaans, Jan, 2017. "The value of electricity storage to large enterprises: A case study on Lancaster University," Energy, Elsevier, vol. 128(C), pages 378-393.
    5. Forero-Quintero, Jose-Fernando & Villafáfila-Robles, Roberto & Barja-Martinez, Sara & Munné-Collado, Ingrid & Olivella-Rosell, Pol & Montesinos-Miracle, Daniel, 2022. "Profitability analysis on demand-side flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Berrada, Asmae & Loudiyi, Khalid & Garde, Raquel, 2017. "Dynamic modeling of gravity energy storage coupled with a PV energy plant," Energy, Elsevier, vol. 134(C), pages 323-335.
    7. Berrada, Asmae, 2022. "Financial and economic modeling of large-scale gravity energy storage system," Renewable Energy, Elsevier, vol. 192(C), pages 405-419.
    8. Wu, Zhou & Ling, Rui & Tang, Ruoli, 2017. "Dynamic battery equalization with energy and time efficiency for electric vehicles," Energy, Elsevier, vol. 141(C), pages 937-948.
    9. Lai, Chun Sing & Locatelli, Giorgio & Pimm, Andrew & Tao, Yingshan & Li, Xuecong & Lai, Loi Lei, 2019. "A financial model for lithium-ion storage in a photovoltaic and biogas energy system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    2. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    3. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    4. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    5. Fernando N'u~nez & David Canca & 'Angel Arcos-Vargas, 2020. "An assessment of European electricity arbitrage using storage systems," Papers 2010.11912, arXiv.org.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    8. Chazarra, Manuel & Pérez-Díaz, Juan I. & García-González, Javier & Praus, Roland, 2018. "Economic viability of pumped-storage power plants participating in the secondary regulation service," Applied Energy, Elsevier, vol. 216(C), pages 224-233.
    9. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    10. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    11. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    12. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
    13. Metz, Dennis & Saraiva, João Tomé, 2018. "Simultaneous co-integration of multiple electrical storage applications in a consumer setting," Energy, Elsevier, vol. 143(C), pages 202-211.
    14. Barbry, Adrien & Anjos, Miguel F. & Delage, Erick & Schell, Kristen R., 2019. "Robust self-scheduling of a price-maker energy storage facility in the New York electricity market," Energy Economics, Elsevier, vol. 78(C), pages 629-646.
    15. Shafiee, Soroush & Zamani-Dehkordi, Payam & Zareipour, Hamidreza & Knight, Andrew M., 2016. "Economic assessment of a price-maker energy storage facility in the Alberta electricity market," Energy, Elsevier, vol. 111(C), pages 537-547.
    16. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    17. Zucker, Andreas & Hinchliffe, Timothée, 2014. "Optimum sizing of PV-attached electricity storage according to power market signals – A case study for Germany and Italy," Applied Energy, Elsevier, vol. 127(C), pages 141-155.
    18. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    19. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.
    20. Hittinger, Eric & Lueken, Roger, 2015. "Is inexpensive natural gas hindering the grid energy storage industry?," Energy Policy, Elsevier, vol. 87(C), pages 140-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:94-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.