IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp930-942.html
   My bibliography  Save this article

Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

Author

Listed:
  • Ramos Muñoz, Edgar
  • Razeghi, Ghazal
  • Zhang, Li
  • Jabbari, Faryar

Abstract

The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure.

Suggested Citation

  • Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:930-942
    DOI: 10.1016/j.energy.2016.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    2. Tarroja, Brian & Zhang, Li & Wifvat, Van & Shaffer, Brendan & Samuelsen, Scott, 2016. "Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles," Energy, Elsevier, vol. 106(C), pages 673-690.
    3. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    4. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    5. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    6. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    7. Shokrzadeh, Shahab & Bibeau, Eric, 2016. "Sustainable integration of intermittent renewable energy and electrified light-duty transportation through repurposing batteries of plug-in electric vehicles," Energy, Elsevier, vol. 106(C), pages 701-711.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kheradmand-Khanekehdani, Habiballah & Gitizadeh, Mohsen, 2018. "Well-being analysis of distribution network in the presence of electric vehicles," Energy, Elsevier, vol. 155(C), pages 610-619.
    2. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    3. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Jia, Yikai & Yin, Sha & Liu, Binghe & Zhao, Hui & Yu, Huili & Li, Jie & Xu, Jun, 2019. "Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading," Energy, Elsevier, vol. 166(C), pages 951-960.
    5. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    6. Raslavičius, Laurencas & Starevičius, Martynas & Keršys, Artūras & Pilkauskas, Kęstutis & Vilkauskas, Andrius, 2013. "Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania," Energy, Elsevier, vol. 55(C), pages 436-448.
    7. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    8. Verma, Aman & Raj, Ratan & Kumar, Mayank & Ghandehariun, Samane & Kumar, Amit, 2015. "Assessment of renewable energy technologies for charging electric vehicles in Canada," Energy, Elsevier, vol. 86(C), pages 548-559.
    9. Carrión, Miguel & Domínguez, Ruth & Cañas-Carretón, Miguel & Zárate-Miñano, Rafael, 2019. "Scheduling isolated power systems considering electric vehicles and primary frequency response," Energy, Elsevier, vol. 168(C), pages 1192-1207.
    10. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    11. Faessler, B. & Kepplinger, P. & Petrasch, J., 2017. "Decentralized price-driven grid balancing via repurposed electric vehicle batteries," Energy, Elsevier, vol. 118(C), pages 446-455.
    12. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
    13. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    14. Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
    15. Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
    16. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    17. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    20. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:930-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.