IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp998-1015.html
   My bibliography  Save this article

Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland

Author

Listed:
  • Densing, M.
  • Panos, E.
  • Hirschberg, S.

Abstract

We present a meta-analysis of long-term energy-system scenario studies. The meta-analysis comprises a qualitative taxonomy of modeling approaches and a quantitative decomposition of scenario results across heterogenous studies. The analysis is exemplified by technology-detailed scenario studies of the Swiss electricity system. In the decomposition approach, we assess the variability across scenario results by a principal component analysis, which provides a low-dimensional approximation of multidimensional data. Additionally, by means of a distance measure, the extremality of a scenario result is evaluated, and a minimal set of representative scenarios is determined with respect to a considered scenario result. The proposed methods contribute to the analysis of commonality of modeling approaches and of multidimensional results across heterogenous scenario studies.

Suggested Citation

  • Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:998-1015
    DOI: 10.1016/j.energy.2016.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Other publications TiSEM 6f2cbb5e-2d53-4be6-a4f9-9, Tilburg University, School of Economics and Management.
    3. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    4. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    5. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    6. McJeon, Haewon C. & Clarke, Leon & Kyle, Page & Wise, Marshall & Hackbarth, Andrew & Bryant, Benjamin P. & Lempert, Robert J., 2011. "Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?," Energy Economics, Elsevier, vol. 33(4), pages 619-631, July.
    7. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    9. Greening, Lorna A. & Bernow, Steve, 2004. "Design of coordinated energy and environmental policies: use of multi-criteria decision-making," Energy Policy, Elsevier, vol. 32(6), pages 721-735, April.
    10. Tietje, Olaf, 2005. "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, Elsevier, vol. 162(2), pages 418-432, April.
    11. Parker, Andrew M. & Srinivasan, Sinduja V. & Lempert, Robert J. & Berry, Sandra H., 2015. "Evaluating simulation-derived scenarios for effective decision support," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 64-77.
    12. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    13. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    14. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    15. Kydes, Andy S. & Shaw, Susan H. & McDonald, Douglas F., 1995. "Beyond the horizon: Recent directions in long-term energy modeling," Energy, Elsevier, vol. 20(2), pages 131-149.
    16. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    17. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    18. Robert Lempert, 2013. "Scenarios that illuminate vulnerabilities and robust responses," Climatic Change, Springer, vol. 117(4), pages 627-646, April.
    19. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Research Memorandum 777, Tilburg University, School of Economics and Management.
    20. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    21. Hamarat, Caner & Kwakkel, Jan H. & Pruyt, Erik, 2013. "Adaptive Robust Design under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 408-418.
    22. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
    23. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    24. Beaver, Ron, 1993. "Structural comparison of the models in EMF 12," Energy Policy, Elsevier, vol. 21(3), pages 238-248, March.
    25. Kristoffer Herland Hellton & Magne Thoresen, 2014. "The Impact of Measurement Error on Principal Component Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1051-1063, December.
    26. Lucas Bretschger & Lin Zhang & Roger Ramer, 2012. "Economic effects of a nuclear-phase out policy: A CGE analysis," CER-ETH Economics working paper series 12/167, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    27. Adriana Marcucci Bustos & Hal Turton, 2012. "Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 317-345, June.
    28. Frederic H. Murphy & Yves Smeers, 2005. "Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets," Operations Research, INFORMS, vol. 53(4), pages 646-661, August.
    29. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    2. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    6. Kockel, Christina & Nolting, Lars & Priesmann, Jan & Praktiknjo, Aaron, 2022. "Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case," Applied Energy, Elsevier, vol. 308(C).
    7. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    8. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Berntsen, Philip B. & Trutnevyte, Evelina, 2017. "Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives," Energy, Elsevier, vol. 126(C), pages 886-898.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    2. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    5. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    6. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    7. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.
    8. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    9. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    11. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    13. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    14. Parker, Andrew M. & Srinivasan, Sinduja V. & Lempert, Robert J. & Berry, Sandra H., 2015. "Evaluating simulation-derived scenarios for effective decision support," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 64-77.
    15. Makpal Assembayeva & Jonas Egerer & Roman Mendelevitch & Nurkhat Zhakiyev, 2017. "A Spatial Electricity Market Model for the Power System of Kazakhstan," Discussion Papers of DIW Berlin 1659, DIW Berlin, German Institute for Economic Research.
    16. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    17. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    18. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    19. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    20. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:998-1015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.