IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v97y2016icp494-506.html
   My bibliography  Save this article

Analysis of drivers affecting the use of market premium for renewables in Germany

Author

Listed:
  • Genoese, Massimo
  • Slednev, Viktor
  • Fichtner, Wolf

Abstract

In this paper, we identify and analyze parameters that determine the profitability of wind power operators in the German market premium model. Based on an empirical analysis of different German wind power profiles from 2007 to mid-2012, we are able to show that the profitability significantly depends on the correlation of the wind power portfolio with the overall wind power feed-in and prediction error in Germany. Significant differences between the wind forecast errors clearing cost of the analyzed portfolios can be identified. Our analysis shows that a wind power operator would profit in most cases from a reduced forecast error, which could be achieved through an improved forecast model and an increased share of the intraday cleared error. Furthermore significant locational portfolio advantages and disadvantages can be identified when comparing the different market values. In general, the empirical analysis shows that a premium of 3.5€/MWh is suitable to cover the cost of an imperfect forecast. Taking further into account that for 2012 a premium of 12€/MWh was granted; the direct marketing option can be evaluated as highly attractive, which is furthermore indicated by the rapid increase of the directly marketed wind power and photovoltaic generation.

Suggested Citation

  • Genoese, Massimo & Slednev, Viktor & Fichtner, Wolf, 2016. "Analysis of drivers affecting the use of market premium for renewables in Germany," Energy Policy, Elsevier, vol. 97(C), pages 494-506.
  • Handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:494-506
    DOI: 10.1016/j.enpol.2016.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516304049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klessmann, Corinna & Nabe, Christian & Burges, Karsten, 2008. "Pros and cons of exposing renewables to electricity market risks--A comparison of the market integration approaches in Germany, Spain, and the UK," Energy Policy, Elsevier, vol. 36(10), pages 3646-3661, October.
    2. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    3. Angarita-Marquez, Jorge L. & Hernandez-Aramburo, Carlos A. & Usaola-Garcia, Julio, 2007. "Analysis of a wind farm's revenue in the British and Spanish markets," Energy Policy, Elsevier, vol. 35(10), pages 5051-5059, October.
    4. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    5. Bode, Sven & Groscurth, Helmuth-Michael, 2006. "Zur Wirkung des EEG auf den "Strompreis"," HWWA Discussion Papers 348, Hamburg Institute of International Economics (HWWA).
    6. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    7. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Pieńkowski & Wojciech Zbaraszewski, 2019. "Sustainable Energy Autarky and the Evolution of German Bioenergy Villages," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    2. Hualin Cai & Jiageng Chen & Chenjing Dong & Jing Li & Zhemin Lin & Chuan He & Yicheng Jiang & Jincheng Li & Li Yang, 2019. "Power Market Equilibrium under the Joint FIP-RPS Renewable Energy Incentive Mechanism in China," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    3. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    4. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
    5. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    6. Hanemann, Philipp & Bruckner, Thomas, 2018. "Effects of electric vehicles on the spot market price," Energy, Elsevier, vol. 162(C), pages 255-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    2. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    3. Bueno-Lorenzo, Miriam & Moreno, M. Ángeles & Usaola, Julio, 2013. "Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case," Energy Policy, Elsevier, vol. 62(C), pages 1010-1019.
    4. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    5. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Lilian de Menezes & Melanie A. Houllier, 2013. "Modelling Germany´s Energy Transition and its Potential Effect on European Electricity Spot Markets," EcoMod2013 5395, EcoMod.
    7. Fridgen, Gilbert & Michaelis, Anne & Rinck, Maximilian & Schöpf, Michael & Weibelzahl, Martin, 2020. "The search for the perfect match: Aligning power-trading products to the energy transition," Energy Policy, Elsevier, vol. 144(C).
    8. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    9. Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
    10. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    11. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    12. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    13. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Sciences Po publications info:hdl:2441/53r60a8s3ku, Sciences Po.
    14. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    15. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    16. Reinhard Madlener & Weiyu Gao & Ilja Neustadt & Peter Zweifel, 2008. "Promoting renewable electricity generation in imperfect markets: price vs. quantity policies," SOI - Working Papers 0809, Socioeconomic Institute - University of Zurich.
    17. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    18. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    19. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    20. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:494-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.