IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v68y2014icp1-14.html
   My bibliography  Save this article

Securing a bioenergy future without imports

Author

Listed:
  • Welfle, Andrew
  • Gilbert, Paul
  • Thornley, Patricia

Abstract

The UK has legally binding renewable energy and greenhouse gas targets. Energy from biomass is anticipated to make major contributions to these. However there are concerns about the availability and sustainability of biomass for the bioenergy sector. A Biomass Resource Model has been developed that reflects the key biomass supply-chain dynamics and interactions determining resource availability, taking into account climate, food, land and other constraints. The model has been applied to the UK, developing four biomass resource scenarios to analyse resource availability and energy generation potential within different contexts. The model shows that indigenous biomass resources and energy crops could service up to 44% of UK energy demand by 2050 without impacting food systems. The scenarios show, residues from agriculture, forestry and industry provide the most robust resource, potentially providing up to 6.5% of primary energy demand by 2050. Waste resources are found to potentially provide up to 15.4% and specifically grown biomass and energy crops up to 22% of demand. The UK is therefore projected to have significant indigenous biomass resources to meet its targets. However the dominant biomass resource opportunities identified in the paper are not consistent with current UK bioenergy strategies, risking biomass deficit despite resource abundance.

Suggested Citation

  • Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
  • Handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:1-14
    DOI: 10.1016/j.enpol.2013.11.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513012093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Is renewable energy effective in promoting growth?," Energy Policy, Elsevier, vol. 46(C), pages 434-442.
    2. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    3. Mookerjee, Rajen, 2006. "A meta-analysis of the export growth hypothesis," Economics Letters, Elsevier, vol. 91(3), pages 395-401, June.
    4. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    5. Panoutsou, Calliope & Eleftheriadis, John & Nikolaou, Anastasia, 2009. "Biomass supply in EU27 from 2010 to 2030," Energy Policy, Elsevier, vol. 37(12), pages 5675-5686, December.
    6. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    7. Ignaciuk, A. & Vohringer, F. & Ruijs, A. & van Ierland, E.C., 2006. "Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis," Energy Policy, Elsevier, vol. 34(10), pages 1127-1138, July.
    8. Schoene, Dieter H.F. & Bernier, Pierre Y., 2012. "Adapting forestry and forests to climate change: A challenge to change the paradigm," Forest Policy and Economics, Elsevier, vol. 24(C), pages 12-19.
    9. Anderson, Kevin L. & Mander, Sarah L. & Bows, Alice & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part II: Scenarios for a 60% CO2 reduction in the UK," Energy Policy, Elsevier, vol. 36(10), pages 3764-3773, October.
    10. Karl Steininger & Tim Wojan, 2011. "Economic Impact of Bioenergy Development: Some evidence from Europe and the US," EuroChoices, The Agricultural Economics Society, vol. 10(3), pages 31-37, December.
    11. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Hammond, Geoffrey & O' Grady, Áine, 2017. "The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector," Energy, Elsevier, vol. 118(C), pages 937-949.
    2. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    3. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    4. Tylecote, Andrew, 2019. "Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change," Research Policy, Elsevier, vol. 48(4), pages 858-868.
    5. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.
    6. Welfle, Andrew & Röder, Mirjam, 2022. "Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals," Renewable Energy, Elsevier, vol. 191(C), pages 493-509.
    7. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    3. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    4. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    5. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    6. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    7. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    8. Emilio Cerdá & Alejandro Caparrós & Paola Ovando, 2008. "Bioenergía en la Unión Europea," Economic Reports 26-08, FEDEA.
    9. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    11. Carney, Sebastian & Shackley, Simon, 2009. "The greenhouse gas regional inventory project (GRIP): Designing and employing a regional greenhouse gas measurement tool for stakeholder use," Energy Policy, Elsevier, vol. 37(11), pages 4293-4302, November.
    12. Mattila, Tuomas & Antikainen, Riina, 2011. "Backcasting sustainable freight transport systems for Europe in 2050," Energy Policy, Elsevier, vol. 39(3), pages 1241-1248, March.
    13. Ajanovic, Amela & Haas, Reinhard, 2014. "CO2-reduction potentials and costs of biomass-based alternative energy carriers in Austria," Energy, Elsevier, vol. 69(C), pages 120-131.
    14. Acaroglu, Mustafa & Baser, Eyup & Aydogan, Hasan & Canli, Eyüb, 2022. "A new energy crop onopordum spp.: A research on biofuel properties," Energy, Elsevier, vol. 261(PB).
    15. Vávrová, Kamila & Knápek, Jaroslav & Weger, Jan, 2014. "Modeling of biomass potential from agricultural land for energy utilization using high resolution spatial data with regard to food security scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 436-444.
    16. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    17. Hoolohan, Claire & McLachlan, Carly & Larkin, Alice, 2019. "‘Aha’ moments in the water-energy-food nexus: A new morphological scenario method to accelerate sustainable transformation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    18. Vávrová, Kamila & Knápek, Jaroslav & Weger, Jan, 2017. "Short-term boosting of biomass energy sources – Determination of biomass potential for prevention of regional crisis situations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 426-436.
    19. Trink, Thomas & Schmid, Christoph & Schinko, Thomas & Steininger, Karl W. & Loibnegger, Thomas & Kettner, Claudia & Pack, Alexandra & Töglhofer, Christoph, 2010. "Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria," Energy Policy, Elsevier, vol. 38(10), pages 5912-5926, October.
    20. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.

    More about this item

    Keywords

    Biomass; Resource; Energy;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.