IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v59y2013icp710-715.html
   My bibliography  Save this article

Energy conservation for international dry bulk carriers via vessel speed reduction

Author

Listed:
  • Chang, Ching-Chin
  • Chang, Chia-Hong

Abstract

This study uses an activity-based method to investigate the fuel consumption and corresponding CO2 emissions of Capesize, Panamax, Supramax, and Handysize dry bulk carriers. The emission and energy reductions are estimated for speed reductions of 10%, 20%, and 30%. The CATCH (cost of averting a tonne of CO2—eq heating) model is applied to evaluate the cost efficiency of speed reduction. Results show that speed reductions of 10%, 20%, and 30% reduce fuel consumption by 27.1%, 48.8%, and 60.3% and CO2 emissions by 19%, 36%, and 51%, respectively. Speed reduction leads to emission reductions, with greater reductions for larger ships. CATCH values are positive, indicating that reducing speed increases cost. Line C3 of Capesize is used to determine the optimal ship number and operational speed under energy conservation. The minimum number of vessels in service is 9, with an average operational speed of 14.53 knots and one port call per week. If speed is reduced by 10%, 20%, and 30%, one, two, and four additional ships are needed, respectively.

Suggested Citation

  • Chang, Ching-Chin & Chang, Chia-Hong, 2013. "Energy conservation for international dry bulk carriers via vessel speed reduction," Energy Policy, Elsevier, vol. 59(C), pages 710-715.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715
    DOI: 10.1016/j.enpol.2013.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513002644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernestos Tzannatos, 2010. "Cost assessment of ship emission reduction methods at berth: the case of the Port of Piraeus, Greece," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 427-445, July.
    2. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kun & Fu, Xiaowen & Luo, Meifeng, 2015. "Modeling the impacts of alternative emission trading schemes on international shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 35-49.
    2. Xinjia Gao & Aoshuang Zhu & Qifeng Yu, 2023. "Exploring the Carbon Abatement Strategies in Shipping Using System Dynamics Approach," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    3. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    4. Hui-Huang Tai & Yun-Hua Chang, 2022. "Reducing pollutant emissions from vessel maneuvering in port areas," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 651-671, September.
    5. Ying Kou & Meifeng Luo, 2016. "Strategic capacity competition and overcapacity in shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(4), pages 389-406, May.
    6. Emma Díaz-Ruiz-Navamuel & Andrés Ortega Piris & Alfonso-Isidro López-Diaz & Miguel A. Gutiérrez & Manuel Andres Roiz & Jesus M. Oria Chaveli, 2021. "Influence of Ships Docking System in the Reduction of CO 2 Emissions in Container Ports," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    7. Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
    8. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2020. "Schedule design for liner services under vessel speed reduction incentive programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 45-62, February.
    10. Toby Roberts & Ian Williams & John Preston & Nick Clarke & Melinda Odum & Stefanie O’Gorman, 2023. "Ports in a Storm: Port-City Environmental Challenges and Solutions," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    11. Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    2. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    3. Slack, Brian & Gouvernal, Elisabeth, 2011. "Container freight rates and the role of surcharges," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1482-1489.
    4. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    5. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    6. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    7. Simone CASCHILI & Francesca MEDDA, 2015. "The Port Attractiveness Index:Application On African Ports," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 41, pages 47-82.
    8. Gibbs, David & Rigot-Muller, Patrick & Mangan, John & Lalwani, Chandra, 2014. "The role of sea ports in end-to-end maritime transport chain emissions," Energy Policy, Elsevier, vol. 64(C), pages 337-348.
    9. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    11. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    12. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    13. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    14. Wang, Ying & Yeo, Gi-Tae & Ng, Adolf K.Y., 2014. "Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach," Transport Policy, Elsevier, vol. 35(C), pages 358-365.
    15. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    16. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    17. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    18. Zhang, Yilin & Zhang, Anming & Wang, Kun & Zheng, Shiyuan & Yang, Hangjun & Hong, Junjie, 2023. "Impact of CR Express and intermodal freight transport competition on China-Europe Route: Emission and welfare implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    19. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    20. Nikola Kutin & Zakaria Moussa & Thomas Vallée, 2018. "Factors behind the Freight Rates in the Liner Shipping Industry," Working Papers halshs-01828633, HAL.

    More about this item

    Keywords

    Activity-based model; Dry bulk carrier; CO2 emissions;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.