IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v111y2018icp18-39.html
   My bibliography  Save this article

The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network

Author

Listed:
  • Mallidis, Ioannis
  • Iakovou, Eleftherios
  • Dekker, Rommert
  • Vlachos, Dimitrios

Abstract

We propose an analytical modeling methodology for quantifying the impact of slow steaming on the carrier’s voyage cost and on the shipper’s total landed logistics costs. The developed methodology can be employed by a carrier and a shipper in their contract negotiations, in order for the two parties to determine how they could divide between them the savings resulted from slow steaming. We demonstrate that the impact of slow steaming and speed adjustment policies on the shippers’ total landed logistics costs tend to increase as the vessel travels towards the end of its voyage.

Suggested Citation

  • Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.
  • Handle: RePEc:eee:transe:v:111:y:2018:i:c:p:18-39
    DOI: 10.1016/j.tre.2017.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517303162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingbo Yin & Lixian Fan & Zhongzhen Yang & Kevin X. Li, 2014. "Slow steaming of liner trade: its economic and environmental impacts," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(2), pages 149-158, March.
    2. Chang, Ching-Chin & Chang, Chia-Hong, 2013. "Energy conservation for international dry bulk carriers via vessel speed reduction," Energy Policy, Elsevier, vol. 59(C), pages 710-715.
    3. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
    4. Wu, Wei-Ming, 2009. "An approach for measuring the optimal fleet capacity: Evidence from the container shipping lines in Taiwan," International Journal of Production Economics, Elsevier, vol. 122(1), pages 118-126, November.
    5. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    6. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    7. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    8. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
    9. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    10. Fischer, Andreas & Nokhart, Håkon & Olsen, Henrik & Fagerholt, Kjetil & Rakke, Jørgen Glomvik & Stålhane, Magnus, 2016. "Robust planning and disruption management in roll-on roll-off liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 51-67.
    11. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    12. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    13. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    14. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
    15. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.
    16. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    17. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    18. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    19. Wong, Eugene Y.C. & Tai, Allen H. & Lau, Henry Y.K. & Raman, Mardjuki, 2015. "An utility-based decision support sustainability model in slow steaming maritime operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Wenhao & Bai, Xiwen, 2022. "Prospects for improving shipping companies’ profit margins by quantifying operational strategies and market focus approach through AIS data," Transport Policy, Elsevier, vol. 128(C), pages 138-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    3. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    4. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    5. Hamed Hasheminia & Changmin Jiang, 2017. "Strategic trade-off between vessel delay and schedule recovery: an empirical analysis of container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 458-473, May.
    6. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    7. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    8. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2020. "Schedule design for liner services under vessel speed reduction incentive programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 45-62, February.
    9. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    10. Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
    11. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    12. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    13. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    14. Chen Li & Xiangtong Qi & Chung-Yee Lee, 2015. "Disruption Recovery for a Vessel in Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 900-921, November.
    15. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    16. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    17. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    18. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    19. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    20. Mulder, Judith & Dekker, Rommert, 2019. "Designing robust liner shipping schedules: Optimizing recovery actions and buffer times," European Journal of Operational Research, Elsevier, vol. 272(1), pages 132-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:111:y:2018:i:c:p:18-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.