IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1831-1844.html
   My bibliography  Save this article

Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas

Author

Listed:
  • Castillo, Anya
  • Linn, Joshua

Abstract

This paper compares the incentives a carbon dioxide emissions price creates for investment in low carbon dioxide-emitting technologies in the electricity sector. We consider the extent to which operational differences across generation technologies - particularly, nuclear, wind and solar photovoltaic - create differences in the incentives for new investment, which is measured by the operating profits of a potential entrant. First, astylized model of an electricity system demonstrates that the composition of the existing generation system may cause electricity prices to increase by different amounts over time when a carbon dioxide price is imposed. Differences in operation across technologies therefore translate to differences in the operating profits of a potential entrant. Then, a detailed simulation model is used to consider a hypothetical carbon dioxide price of $10-$50 per metric ton for the Electric Reliability Council of Texas (ERCOT) market. The simulations show that, for the range of prices considered, the increase in electricity prices is positively correlated with output from a typical wind unit, but the correlation is much weaker for nuclear and photovoltaic. Consequently, a carbon dioxide price creates much stronger investment incentives for wind than for nuclear or photovoltaic technologies in the Texas market.

Suggested Citation

  • Castillo, Anya & Linn, Joshua, 2011. "Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas," Energy Policy, Elsevier, vol. 39(3), pages 1831-1844, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1831-1844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00032-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fischer, Carolyn & Fox, Alan, 2004. "Output-Based Allocations of Emissions Permits: Efficiency and Distributional Effects in a General Equilibrium Setting with Taxes and Trade," RFF Working Paper Series dp-04-37, Resources for the Future.
    2. Weber, Thomas A. & Neuhoff, Karsten, 2010. "Carbon markets and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 115-132, September.
    3. Curtis Carlson & Dallas Burtraw & Maureen Cropper & Karen L. Palmer, 2000. "Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade?," Journal of Political Economy, University of Chicago Press, vol. 108(6), pages 1292-1326, December.
    4. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    5. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    6. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    7. Joshua Linn, 2008. "Technological Modifications in the Nitrogen Oxides Tradable Permit Program," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 153-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Motavasseli, Ali, 2016. "Essays in environmental policy and household economics," Other publications TiSEM b32e287e-169b-4e89-9878-1, Tilburg University, School of Economics and Management.
    2. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    3. Brett Watson & Ian Lange & Joshua Linn, 2023. "Coal demand, market forces, and U.S. coal mine closures," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 35-57, January.
    4. Linn, Joshua & Shih, Jhih-Shyang, 2019. "Do lower electricity storage costs reduce greenhouse gas emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 130-158.
    5. Knizley, Alta A. & Mago, Pedro J. & Smith, Amanda D., 2014. "Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units," Energy Policy, Elsevier, vol. 66(C), pages 654-665.
    6. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.
    8. Xiangsheng Dou, 2017. "Low Carbon Technology Innovation, Carbon Emissions Trading and Relevant Policy Support for China s Low Carbon Economy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 172-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Dongdong Li, 2021. "Optimal licensing strategy of green technology in a mixed oligopoly: Fixed fee versus royalty," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(4), pages 942-951, June.
    4. Parry, Ian W H & Pizer, William A & Fischer, Carolyn, 2003. "How Large Are the Welfare Gains from Technological Innovation Induced by Environmental Policies?," Journal of Regulatory Economics, Springer, vol. 23(3), pages 237-255, May.
    5. Dongdong Li, 2022. "Dynamic optimal control of firms' green innovation investment and pricing strategies with environmental awareness and emission tax," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(4), pages 920-932, June.
    6. Ian Lange & Allen Bellas, 2005. "Technological Change for Sulfur Dioxide Scrubbers under Market-Based Regulation," Land Economics, University of Wisconsin Press, vol. 81(4).
    7. Burtraw, Dallas & Szambelan, Sarah Jo, 2009. "U.S. Emissions Trading Markets for SO2 and NOx," RFF Working Paper Series dp-09-40, Resources for the Future.
    8. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    9. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2018. "Can Direct Regulations Spur Innovations in Environmental Technologies? A Study on Firmā€Level Patenting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 338-371, April.
    10. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    11. Fraas, Arthur G. & Kopits, Elizabeth & Wolverton, Ann, 2021. "A Retrospective Review of Retrospective Cost Analyses," RFF Working Paper Series 21-29, Resources for the Future.
    12. Joseph E. Aldy & William A. Pizer, 2009. "Issues in Designing U.S. Climate Change Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 179-210.
    13. Stavins, Robert, 2001. "Lessons From the American Experiment With Market-Based Environmental Policies," RFF Working Paper Series dp-01-53, Resources for the Future.
    14. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    15. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    16. Richard Schmalensee & Robert N. Stavins, 2019. "Policy Evolution under the Clean Air Act," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 27-50, Fall.
    17. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    18. Grischa Perino, 2010. "Price Discrimination Based on Downstream Regulation: Evidence from the Market for SO2 Scrubbers," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2010-09, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    19. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2013. "Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation," NBER Working Papers 19636, National Bureau of Economic Research, Inc.
    20. Weber, Thomas A. & Neuhoff, Karsten, 2010. "Carbon markets and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 115-132, September.

    More about this item

    Keywords

    Electricity Investment Carbon price;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1831-1844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.