IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i10p6084-6091.html
   My bibliography  Save this article

Maximizing efficiency in the transition to a coal-based economy

Author

Listed:
  • Brathwaite, J.
  • Horst, S.
  • Iacobucci, J.

Abstract

Energy is the lynchpin of modern society. Since the early 1970s, growing dependence on foreign energy sources, oil in particular, has constrained US independence in foreign policy, and at times, inhibited economic stability and growth. Addressing oil dependence is politically and economically complex. Proposed solutions are multifaceted with various objectives such as energy efficiency and resource substitution. One solution is the partial transition from an oil- to coal-based economy. A number of facts support this solution including vast coal reserves in the US and the relative price stability of coal. However, several roadblocks exist. These include uncertain recoverable reserves and the immaturity of "clean" coal technologies. This paper provides a first order analysis of the most efficient use of coal assuming the transition from oil to coal is desirable. Scenario analysis indicates two possible transition pathways: (1) bring the transportation sector onto the electric grid and (2) use coal-to-liquid fuels to directly power vehicles. The feasibility of each pathway is examined based on economic and environmental factors, among which are energy availability, affordability and efficiency, and environmental sustainability. Results indicate that partial transition of the transportation sector onto the electric grid offers the more viable solution for coal-based reduction of the US oil dependence.

Suggested Citation

  • Brathwaite, J. & Horst, S. & Iacobucci, J., 2010. "Maximizing efficiency in the transition to a coal-based economy," Energy Policy, Elsevier, vol. 38(10), pages 6084-6091, October.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:6084-6091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00435-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delucchi, Mark A. & Murphy, James J., 2008. "US military expenditures to protect the use of Persian Gulf oil for motor vehicles," Energy Policy, Elsevier, vol. 36(6), pages 2253-2264, June.
    2. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    3. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    4. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    5. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    6. Stern, Roger J., 2010. "United States cost of military force projection in the Persian Gulf, 1976-2007," Energy Policy, Elsevier, vol. 38(6), pages 2816-2825, June.
    7. Jaramillo, Paulina & Samaras, Constantine & Wakeley, Heather & Meisterling, Kyle, 2009. "Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways," Energy Policy, Elsevier, vol. 37(7), pages 2689-2695, July.
    8. Sioshansi, Fereidoon P., 2007. "Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Cleaner and Enduring Energy," Energy Policy, Elsevier, vol. 35(1), pages 758-759, January.
    9. Deepak Rajagopal & Steve Sexton & Gal Hochman & David Zilberman, 2009. "Recent Developments in Renewable Technologies: R&D Investment in Advanced Biofuels," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 621-644, September.
    10. Correlje, Aad & van der Linde, Coby, 2006. "Energy supply security and geopolitics: A European perspective," Energy Policy, Elsevier, vol. 34(5), pages 532-543, March.
    11. Vivoda, Vlado, 2009. "Diversification of oil import sources and energy security: A key strategy or an elusive objective?," Energy Policy, Elsevier, vol. 37(11), pages 4615-4623, November.
    12. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    13. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    2. Kiriyama, Eriko & Kajikawa, Yuya, 2014. "A multilayered analysis of energy security research and the energy supply process," Applied Energy, Elsevier, vol. 123(C), pages 415-423.
    3. Hou, Yanliang & Long, Ruyin & Zhang, Linling & Wu, Meifen, 2020. "Dynamic analysis of the sustainable development capability of coal cities," Resources Policy, Elsevier, vol. 66(C).
    4. Berna Serener & Dervis Kirikkaleli & Kwaku Addai, 2022. "Patents on Environmental Technologies, Financial Development, and Environmental Degradation in Sweden: Evidence from Novel Fourier-Based Approaches," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    5. Gaya Herrington, 2021. "Update to limits to growth: Comparing the World3 model with empirical data," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 614-626, June.
    6. Guo, Pibin & Wang, Ting & Li, Dan & Zhou, Xijun, 2016. "How energy technology innovation affects transition of coal resource-based economy in China," Energy Policy, Elsevier, vol. 92(C), pages 1-6.
    7. Montassar Kahia & Bilel Jarraya & Bassem Kahouli & Anis Omri, 2023. "Do Environmental Innovation and Green Energy Matter for Environmental Sustainability? Evidence from Saudi Arabia (1990–2018)," Energies, MDPI, vol. 16(3), pages 1-18, January.
    8. García-Gusano, Diego & Iribarren, Diego & Dufour, Javier, 2018. "Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach," Energy Policy, Elsevier, vol. 114(C), pages 413-421.
    9. Verbruggen, Aviel & Lauber, Volkmar, 2012. "Assessing the performance of renewable electricity support instruments," Energy Policy, Elsevier, vol. 45(C), pages 635-644.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxiao Chen & Erica Klampfl & Margaret Strumolo & Yan Fu & Xiuli Chao & Michael A. Tamor, 2017. "Optimal investment strategies for light duty vehicle and electricity generation sectors in a carbon constrained world," Annals of Operations Research, Springer, vol. 255(1), pages 391-420, August.
    2. Brutschin, Elina & Fleig, Andreas, 2018. "Geopolitically induced investments in biofuels," Energy Economics, Elsevier, vol. 74(C), pages 721-732.
    3. Kiriyama, Eriko & Kajikawa, Yuya, 2014. "A multilayered analysis of energy security research and the energy supply process," Applied Energy, Elsevier, vol. 123(C), pages 415-423.
    4. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    5. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    6. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    7. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    8. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
    9. Strakos, Joshua K. & Quintanilla, Jose A. & Huscroft, Joseph R., 2016. "Department of Defense energy policy and research: A framework to support strategy," Energy Policy, Elsevier, vol. 92(C), pages 83-91.
    10. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    11. Couharde, Cécile & Karanfil, Fatih & Kilama, Eric Gabin & Omgba, Luc Désiré, 2020. "The role of oil in the allocation of foreign aid: The case of the G7 donors," Journal of Comparative Economics, Elsevier, vol. 48(2), pages 363-383.
    12. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    13. Almas Heshmati & Shahrouz Abolhosseini, 2016. "European energy security: Challenges and green opportunities," WIDER Working Paper Series 021, World Institute for Development Economic Research (UNU-WIDER).
    14. Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
    15. Almas Heshmati & Shahrouz Abolhosseini, 2016. "European energy security: Challenges and green opportunities," WIDER Working Paper Series wp-2016-21, World Institute for Development Economic Research (UNU-WIDER).
    16. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    17. Stempien, J.P. & Chan, S.H., 2017. "Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory," Applied Energy, Elsevier, vol. 202(C), pages 228-237.
    18. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    19. Ediger, Volkan S. & Berk, Istemi, 2011. "Crude oil import policy of Turkey: Historical analysis of determinants and implications since 1968," Energy Policy, Elsevier, vol. 39(4), pages 2132-2142, April.
    20. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:6084-6091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.