IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i9p3455-3462.html
   My bibliography  Save this article

The feasibility of long range battery electric cars in New Zealand

Author

Listed:
  • Duke, Mike
  • Andrews, Deborah
  • Anderson, Timothy

Abstract

New Zealand transport accounts for over 40% of the carbon emissions with private cars accounting for 25%. In the Ministry of Economic Development's recently released "New Zealand Energy Strategy to 2050", it proposed the wide scale deployment of electric vehicles as a means of reducing carbon emissions from transport. However, New Zealand's lack of public transport infrastructure and its subsequent reliance on private car use for longer journeys could mean that many existing battery electric vehicles (BEVs) will not have the performance to replace conventionally fuelled cars. As such, this paper discusses the potential for BEVs in New Zealand, with particular reference to the development of the University of Waikato's long-range UltraCommuter BEV. It is shown that to achieve a long range at higher speeds, BEVs should be designed specifically rather than retrofitting existing vehicles to electric. Furthermore, the electrical energy supply for a mixed fleet of 2 million BEVs is discussed and conservatively calculated, along with the number of wind turbines to achieve this. The results show that approximately 1350Â MW of wind turbines would be needed to supply the mixed fleet of 2 million BEVs, or 54% of the energy produced from NZ's planned and installed wind farms.

Suggested Citation

  • Duke, Mike & Andrews, Deborah & Anderson, Timothy, 2009. "The feasibility of long range battery electric cars in New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3455-3462, September.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:9:p:3455-3462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00651-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammerschlag, Roel & Mazza, Patrick, 2005. "Questioning hydrogen," Energy Policy, Elsevier, vol. 33(16), pages 2039-2043, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Jarvis & Nigel Berkeley & Tom Donnelly, 2012. "Capturing the economic benefits of a transformative shift to low carbon automobility," Local Economy, London South Bank University, vol. 27(7), pages 692-704, November.
    2. Byrd, Hugh & Ho, Anna & Sharp, Basil & Kumar-Nair, Nirmal, 2013. "Measuring the solar potential of a city and its implications for energy policy," Energy Policy, Elsevier, vol. 61(C), pages 944-952.
    3. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    4. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    5. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    2. Wietschel, Martin & Hasenauer, Ulrike, 2007. "Feasibility of hydrogen corridors between the EU and its neighbouring countries," Renewable Energy, Elsevier, vol. 32(13), pages 2129-2146.
    3. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    4. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    5. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    6. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    7. Blanchette Jr., Stephen, 2008. "A hydrogen economy and its impact on the world as we know it," Energy Policy, Elsevier, vol. 36(2), pages 522-530, February.
    8. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    9. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    10. Page, Shannon & Krumdieck, Susan, 2009. "System-level energy efficiency is the greatest barrier to development of the hydrogen economy," Energy Policy, Elsevier, vol. 37(9), pages 3325-3335, September.
    11. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    12. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    13. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    14. Converse, Alvin O., 2006. "The impact of large-scale energy storage requirements on the choice between electricity and hydrogen as the major energy carrier in a non-fossil renewables-only scenario," Energy Policy, Elsevier, vol. 34(18), pages 3374-3376, December.
    15. Murphy, Jerry D. & Browne, James & Allen, Eoin & Gallagher, Cathal, 2013. "The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel," Renewable Energy, Elsevier, vol. 55(C), pages 474-479.
    16. Wietschel, Martin & Hasenauer, Ulrike & de Groot, Arend, 2006. "Development of European hydrogen infrastructure scenarios--CO2 reduction potential and infrastructure investment," Energy Policy, Elsevier, vol. 34(11), pages 1284-1298, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:9:p:3455-3462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.