IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i13p1508-1519.html
   My bibliography  Save this article

Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden

Author

Listed:
  • Gronkvist, Stefan
  • Sandberg, Peter

Abstract

No abstract is available for this item.

Suggested Citation

  • Gronkvist, Stefan & Sandberg, Peter, 2006. "Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden," Energy Policy, Elsevier, vol. 34(13), pages 1508-1519, September.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:13:p:1508-1519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(04)00328-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gebremedhin, Alemayehu & Carlson, Annelie, 2002. "Optimisation of merged district-heating systems--benefits of co-operation in the light of externality costs," Applied Energy, Elsevier, vol. 73(3-4), pages 223-235, November.
    2. Grohnheit, Poul Erik & Gram Mortensen, Bent Ole, 2003. "Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies," Energy Policy, Elsevier, vol. 31(9), pages 817-826, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lygnerud, Kristina & Klugman, Sofia & Fransson, Nathalie & Nilsson, Johanna, 2022. "Risk assessment of industrial excess heat collaborations – Empirical data from new and ongoing installations," Energy, Elsevier, vol. 255(C).
    2. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    3. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    4. Wang, Jinda & Sun, Chunhua & Qi, Chengying & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2021. "Promoting the performance of district heating from waste heat recovery in China: A general solving framework based on the two-stage branch evaluation method," Energy, Elsevier, vol. 220(C).
    5. Jönsson, Johanna & Svensson, Inger-Lise & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 2: Results for future energy market scenarios," Energy Policy, Elsevier, vol. 36(11), pages 4186-4197, November.
    6. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    7. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    8. Broberg, Sarah & Backlund, Sandra & Karlsson, Magnus & Thollander, Patrik, 2012. "Industrial excess heat deliveries to Swedish district heating networks: Drop it like it's hot," Energy Policy, Elsevier, vol. 51(C), pages 332-339.
    9. Persson, Urban & Werner, Sven, 2012. "District heating in sequential energy supply," Applied Energy, Elsevier, vol. 95(C), pages 123-131.
    10. Svensson, Inger-Lise & Jönsson, Johanna & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 1: Methodology," Energy Policy, Elsevier, vol. 36(11), pages 4178-4185, November.
    11. Thollander, P. & Svensson, I.L. & Trygg, L., 2010. "Analyzing variables for district heating collaborations between energy utilities and industries," Energy, Elsevier, vol. 35(9), pages 3649-3656.
    12. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    13. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    14. Kumar, Shravan & Thakur, Jagruti & Gardumi, Francesco, 2022. "Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    16. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    17. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.
    2. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    3. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    4. Linden, Mikael & Peltola-Ojala, Päivi, 2010. "The deregulation effects of Finnish electricity markets on district heating prices," Energy Economics, Elsevier, vol. 32(5), pages 1191-1198, September.
    5. repec:zbw:inwedp:432009 is not listed on IDEAS
    6. Åberg, M. & Fälting, L. & Forssell, A., 2016. "Is Swedish district heating operating on an integrated market? – Differences in pricing, price convergence, and marketing strategy between public and private district heating companies," Energy Policy, Elsevier, vol. 90(C), pages 222-232.
    7. Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
    8. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    9. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    10. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    11. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    12. Egüez, Alejandro, 2020. "Ownership and district heating prices: The case of an unregulated natural monopoly," Umeå Economic Studies 980, Umeå University, Department of Economics.
    13. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.
    14. Wissner, Matthias, 2014. "Regulation of district-heating systems," Utilities Policy, Elsevier, vol. 31(C), pages 63-73.
    15. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    16. Poputoaia, Diana & Bouzarovski, Stefan, 2010. "Regulating district heating in Romania: Legislative challenges and energy efficiency barriers," Energy Policy, Elsevier, vol. 38(7), pages 3820-3829, July.
    17. Hiremath, Rahul B. & Kumar, Bimlesh & Balachandra, P. & Ravindranath, N.H., 2010. "Bottom-up approach for decentralised energy planning: Case study of Tumkur district in India," Energy Policy, Elsevier, vol. 38(2), pages 862-874, February.
    18. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
    19. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    20. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    21. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:13:p:1508-1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.