IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v30y2002i9p727-736.html
   My bibliography  Save this article

A Shapley decomposition of carbon emissions without residuals

Author

Listed:
  • Albrecht, Johan
  • Francois, Delphine
  • Schoors, Koen

Abstract

No abstract is available for this item.

Suggested Citation

  • Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
  • Handle: RePEc:eee:enepol:v:30:y:2002:i:9:p:727-736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(01)00131-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    2. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    3. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    4. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    5. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    6. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    7. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    3. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    4. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    5. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    6. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    7. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    8. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    9. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
    10. Lise, Wietze, 2006. "Decomposition of CO2 emissions over 1980-2003 in Turkey," Energy Policy, Elsevier, vol. 34(14), pages 1841-1852, September.
    11. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    12. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    13. Katerina PAPAGIANNAKI & Danae DIAKOULAKI, 2008. "Decomposition Analysis of CO2 Emissions from Passenger Cars: The cases of Greece and Denmark," EcoMod2008 23800102, EcoMod.
    14. Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
    15. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    16. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    17. Lescaroux, François, 2008. "Decomposition of US manufacturing energy intensity and elasticities of components with respect to energy prices," Energy Economics, Elsevier, vol. 30(3), pages 1068-1080, May.
    18. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    19. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    20. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:30:y:2002:i:9:p:727-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.