IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v30y2002i9p727-736.html
   My bibliography  Save this item

A Shapley decomposition of carbon emissions without residuals

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  2. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
  3. Lingling Chen & Brijesh Thapa & Wei Yan, 2018. "The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
  4. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
  5. Yen-Yin Chen & Jung-Hua Wu, 2008. "Simple Keynesian input–output structural decomposition analysis using weighted Shapley value resolution," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 879-892, December.
  6. Rive, Nathan, 2010. "Climate policy in Western Europe and avoided costs of air pollution control," Economic Modelling, Elsevier, vol. 27(1), pages 103-115, January.
  7. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
  8. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
  9. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
  10. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
  11. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
  12. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
  13. Ramani Gunatilaka & Duangkamon Chotikapanich, 2006. "Inequality Trends and Determinants in Sri Lanka 1980-2002: A Shapley Approach to Decomposition," Monash Econometrics and Business Statistics Working Papers 6/06, Monash University, Department of Econometrics and Business Statistics.
  14. Mairet, Nicolas & Decellas, Fabrice, 2009. "Determinants of energy demand in the French service sector: A decomposition analysis," Energy Policy, Elsevier, vol. 37(7), pages 2734-2744, July.
  15. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
  16. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
  17. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  18. Ramani Gunatilaka & Duangkamon Chotikapanich, 2009. "Accounting For Sri Lanka'S Expenditure Inequality 1980–2002: Regression‐Based Decomposition Approaches," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(4), pages 882-906, December.
  19. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
  20. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
  21. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
  22. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  23. Carlino, Laurent & Coppens, François & González, Javier & Ortega, Manuel & Pérez-Duarte, Sébastien & Rubbrecht, Ilse & Vennix, Saskia, 2017. "Decomposition techniques for financial ratios of European non-financial listed groups," Statistics Paper Series 21, European Central Bank.
  24. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
  25. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
  26. Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
  27. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
  28. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
  29. Korppoo, Anna & Luukkanen, Jyrki & Vehmas, Jarmo & Kinnunen, Miia, 2008. "What goes down must come up? Trends of industrial electricity use in the North-West of Russia," Energy Policy, Elsevier, vol. 36(9), pages 3588-3597, September.
  30. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
  31. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
  32. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
  33. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
  34. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
  35. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
  36. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
  37. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
  38. Thomas A. Knetsch & Arne J. Nagengast, 2017. "Penny wise and pound foolish? On the income from Germany’s foreign investments," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(4), pages 753-778, November.
  39. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  40. Zhiqian Yu & Dalia Streimikiene & Tomas Balezentis & Rimantas Dapkus, 2017. "Final Energy Consumption Trends and Drivers in Czech Republic and Latvia," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 866-866, August.
  41. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
  42. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
  43. de Boer, P.M.C., 2008. "Energy decomposition analysis: the generalized Fisher index revisited," Econometric Institute Research Papers EI 2008-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  44. Alex R. Hoen & Machiel Mulder, 2003. "A decomposition analysis of the emission of CO2," ERSA conference papers ersa03p151, European Regional Science Association.
  45. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
  46. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
  47. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  48. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
  49. Alex Hoen & Machiel Mulder, 2003. "Explaining Dutch emissions of CO2; a decomposition analysis," CPB Discussion Paper 24, CPB Netherlands Bureau for Economic Policy Analysis.
  50. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
  51. Shuai, Jing & Cheng, Xin & Ding, Liping & Yang, Jun & Leng, Zhihui, 2019. "How should government and users share the investment costs and benefits of a solar PV power generation project in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 86-94.
  52. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
  53. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  54. Xi Zhang & Ziyan Gao & Yong Geng & Yen Wah Tong & Harn Wei Kua & Xiaoqian Song & Yue Xu & Fei Wu, 2020. "Analysis of the Gravity Movement and Decoupling State of China’s CO 2 Emission Embodied in Fixed Capital Formation," Energies, MDPI, vol. 13(24), pages 1-20, December.
  55. de Boer, Paul, 2009. "Generalized Fisher index or Siegel-Shapley decomposition?," Energy Economics, Elsevier, vol. 31(5), pages 810-814, September.
  56. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
  57. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
  58. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
  59. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
  60. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  61. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  62. Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
  63. Eskeland, Gunnar S. & Rive, Nathan A. & Mideksa, Torben K., 2012. "Europe’s climate goals and the electricity sector," Energy Policy, Elsevier, vol. 41(C), pages 200-211.
  64. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
  65. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
  66. Pan, Xiongfeng & Guo, Shucen & Xu, Haitao & Tian, Mengyuan & Pan, Xianyou & Chu, Junhui, 2022. "China's carbon intensity factor decomposition and carbon emission decoupling analysis," Energy, Elsevier, vol. 239(PC).
  67. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
  68. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  69. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
  70. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
  71. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
  72. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
  73. Wen Qiao & Xing Sun & Ping Jiang & Linji Wang, 2020. "Analysis of the Environmental Sustainability of a Megacity through a Cobenefits Indicator System—The Case of Shanghai," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
  74. Wu, Jung-Hua & Chen, Yen-Yin & Huang, Yun-Hsun, 2007. "Trade pattern change impact on industrial CO2 emissions in Taiwan," Energy Policy, Elsevier, vol. 35(11), pages 5436-5446, November.
  75. Chien-Ho Wang & Ming-Hui Ko & Wan-Jiun Chen, 2019. "Effects of Kyoto Protocol on CO 2 Emissions: A Five-Country Rolling Regression Analysis," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.