IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v151y2021ics0301421521000185.html
   My bibliography  Save this article

Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy

Author

Listed:
  • Pianta, Silvia
  • Rinscheid, Adrian
  • Weber, Elke U.

Abstract

Although Carbon Capture and Storage (CCS) technologies can potentially play an important role in climate change mitigation efforts, commercial CCS projects are still rare. Knowledge about the technical challenges of these technologies is rapidly advancing, but the challenges related to their public acceptance are still underinvestigated. Here we try to close this research gap by investigating public perceptions of CCS and public attitudes towards policies to scale up these technologies in the United States, where most existing industrial-scale CCS projects are operating. Based on a demographically representative sample of US residents, we find that awareness of CCS is very low. Using a conjoint experiment, we show that policies that outlaw the construction of new coal- and gas-fired power plants without CCS find higher public support than CCS subsidies and increases in taxes on unabated fossil fuel power generation. Public support decreases with rising costs of CCS deployment and decreasing minimal distance requirements of CCS plants from residential areas. Our results provide insights into the political feasibility of a large-scale deployment of CCS and show that specific policy design choices play an important role in influencing public support for policies to scale up these technologies.

Suggested Citation

  • Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000185
    DOI: 10.1016/j.enpol.2021.112149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    2. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
    3. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    4. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    5. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    6. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    7. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    8. Hainmueller, Jens & Hopkins, Daniel J. & Yamamoto, Teppei, 2014. "Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments," Political Analysis, Cambridge University Press, vol. 22(1), pages 1-30, January.
    9. Kessler, Judd B. & Norton, Michael I., 2016. "Tax aversion in labor supply," Journal of Economic Behavior & Organization, Elsevier, vol. 124(C), pages 15-28.
    10. Liam F. Beiser-McGrath & Robert A. Huber, 2018. "Assessing the relative importance of psychological and demographic factors for predicting climate and environmental attitudes," Climatic Change, Springer, vol. 149(3), pages 335-347, August.
    11. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    12. Stefan Drews & Jeroen C.J.M. van den Bergh, 2016. "What explains public support for climate policies? A review of empirical and experimental studies," Climate Policy, Taylor & Francis Journals, vol. 16(7), pages 855-876, October.
    13. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    14. Phil Williamson, 2016. "Emissions reduction: Scrutinize CO2 removal methods," Nature, Nature, vol. 530(7589), pages 153-155, February.
    15. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    16. Adrian Rinscheid & Silvia Pianta & Elke U. Weber, 2020. "Fast track or Slo-Mo? Public support and temporal preferences for phasing out fossil fuel cars in the United States," Climate Policy, Taylor & Francis Journals, vol. 20(1), pages 30-45, January.
    17. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    18. Wändi Bruine de Bruin & Lauren A. Mayer & M. Granger Morgan, 2015. "Developing communications about CCS: three lessons learned," Journal of Risk Research, Taylor & Francis Journals, vol. 18(6), pages 699-705, June.
    19. Lupia, Arthur, 1994. "Shortcuts Versus Encyclopedias: Information and Voting Behavior in California Insurance Reform Elections," American Political Science Review, Cambridge University Press, vol. 88(1), pages 63-76, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Natalie Warzywoda & Paul Dargusch & Genia Hill, 2022. "How Meaningful Are Modest Carbon Emissions Reductions Targets? The Case of Sumitomo Electrical Group’s Short-Term Targets towards Longer-Term Net Zero," Sustainability, MDPI, vol. 14(7), pages 1-10, April.
    4. Sara Cerasoli & Amilcare Porporato, 2023. "Optimal Resource Allocation for Carbon Mitigation," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    5. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Pan, An & Zhang, Wenna & Shi, Xunpeng & Dai, Ling, 2022. "Climate policy and low-carbon innovation: Evidence from low-carbon city pilots in China," Energy Economics, Elsevier, vol. 112(C).
    7. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    3. Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    4. Danny Otto & Marit Sprenkeling & Ruben Peuchen & Åsta Dyrnes Nordø & Dimitrios Mendrinos & Spyridon Karytsas & Siri Veland & Olympia Polyzou & Martha Lien & Yngve Heggelund & Matthias Gross & Pim Piek, 2022. "On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO 2 Storage Monitoring Systems," Energies, MDPI, vol. 15(15), pages 1-22, August.
    5. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    7. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Muhammad Ridhuan Tony Lim Abdullah & Saedah Siraj & Zulkipli Ghazali, 2021. "An ISM Approach for Managing Critical Stakeholder Issues Regarding Carbon Capture and Storage (CCS) Deployment in Developing Asian Countries," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    9. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    10. Farid Karimi, 2021. "Stakeholders’ Risk Perceptions of Decarbonised Energy System: Insights into Patterns of Behaviour," Energies, MDPI, vol. 14(21), pages 1-14, November.
    11. Wim Carton & Adeniyi Asiyanbi & Silke Beck & Holly J. Buck & Jens F. Lund, 2020. "Negative emissions and the long history of carbon removal," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    12. Henrik Serup Christensen & Lauri Rapeli, 2021. "Immediate rewards or delayed gratification? A conjoint survey experiment of the public’s policy preferences," Policy Sciences, Springer;Society of Policy Sciences, vol. 54(1), pages 63-94, March.
    13. Zeynep Clulow & Michele Ferguson & Peta Ashworth & David Reiner, 2021. "Political ideology and public views of the energy transition in Australia and the UK," Working Papers EPRG2106, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    16. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    17. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    18. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    19. Tryfonas Pieri & Alexandros Nikitas & Athanasios Angelis-Dimakis, 2023. "Public Acceptance and Willingness to Pay for Carbon Capture and Utilisation Products," Clean Technol., MDPI, vol. 5(1), pages 1-15, March.
    20. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.