IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v128y2019icp807-816.html
   My bibliography  Save this article

Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study

Author

Listed:
  • Knoblauch, Theresa A.K.
  • Trutnevyte, Evelina
  • Stauffacher, Michael

Abstract

Deep geothermal energy projects offer low-carbon, renewable base-load resources for electricity and heat production. Siting such projects can be challenging because past projects have induced seismicity. This suggests siting projects in remote areas away from populated areas and infrastructure, with minimal seismic risks. However, deep geothermal projects are most viable when they use residual heat, which requires proximity to heat consumers and thus, ideally, a rather urban environment. Hence, siting options carry various risks and benefits. It is informative to see how the public responds to these risks and benefits. This study investigates how well the public accepts various heat benefits when induced seismic risks are comparatively high or low. Respondents rated their acceptance of four deep geothermal energy scenarios in an online survey (N = 814) conducted in Switzerland and Germany. Conjoint and mixed multivariate statistical analyses show that the public prefers projects sited in remote areas and using residual heat for industrial applications. The results in Switzerland and Germany were rather similar, but the Swiss public was generally more positive. Importantly, induced seismic risks affected acceptance ratings most strongly. Thus, policies to reduce the risk of induced seismicity must be given the highest priority to enable an open dialogue.

Suggested Citation

  • Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
  • Handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:807-816
    DOI: 10.1016/j.enpol.2019.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519300199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Purkus, Alexandra & Barth, Volker, 2011. "Geothermal power production in future electricity markets--A scenario analysis for Germany," Energy Policy, Elsevier, vol. 39(1), pages 349-357, January.
    2. Pellizzone, Anna & Allansdottir, Agnes & De Franco, Roberto & Muttoni, Giovanni & Manzella, Adele, 2015. "Exploring public engagement with geothermal energy in southern Italy: A case study," Energy Policy, Elsevier, vol. 85(C), pages 1-11.
    3. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    4. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    5. McComas, Katherine A. & Lu, Hang & Keranen, Katie M. & Furtney, Maria A. & Song, Hwansuck, 2016. "Public perceptions and acceptance of induced earthquakes related to energy development," Energy Policy, Elsevier, vol. 99(C), pages 27-32.
    6. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    7. Merryn Thomas & Tristan Partridge & Barbara Herr Harthorn & Nick Pidgeon, 2017. "Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK," Nature Energy, Nature, vol. 2(5), pages 1-7, May.
    8. Vithala R. Rao, 2014. "Applied Conjoint Analysis," Springer Books, Springer, edition 127, number 978-3-540-87753-0, December.
    9. Tabi, Andrea & Wüstenhagen, Rolf, 2017. "Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 763-773.
    10. Thorsten Agemar & Josef Weber & Rüdiger Schulz, 2014. "Deep Geothermal Energy Production in Germany," Energies, MDPI, vol. 7(7), pages 1-20, July.
    11. Domenico Giardini, 2009. "Geothermal quake risks must be faced," Nature, Nature, vol. 462(7275), pages 848-849, December.
    12. Pellizzone, Anna & Allansdottir, Agnes & De Franco, Roberto & Muttoni, Giovanni & Manzella, Adele, 2017. "Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy," Energy Policy, Elsevier, vol. 101(C), pages 561-570.
    13. Dermont, Clau & Ingold, Karin & Kammermann, Lorenz & Stadelmann-Steffen, Isabelle, 2017. "Bringing the policy making perspective in: A political science approach to social acceptance," Energy Policy, Elsevier, vol. 108(C), pages 359-368.
    14. Hainmueller, Jens & Hopkins, Daniel J. & Yamamoto, Teppei, 2014. "Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments," Political Analysis, Cambridge University Press, vol. 22(1), pages 1-30, January.
    15. Enes Hoşgör & Jay Apt & Baruch Fischhoff, 2013. "Incorporating seismic concerns in site selection for enhanced geothermal power generation," Journal of Risk Research, Taylor & Francis Journals, vol. 16(8), pages 1021-1036, September.
    16. Botelho, Anabela & Lourenço-Gomes, Lina & Pinto, Lígia & Sousa, Sara & Valente, Marieta, 2017. "Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal," Energy Policy, Elsevier, vol. 109(C), pages 191-198.
    17. Schilling, Melissa A. & Esmundo, Melissa, 2009. "Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government," Energy Policy, Elsevier, vol. 37(5), pages 1767-1781, May.
    18. Cohen, Jed J. & Reichl, Johannes & Schmidthaler, Michael, 2014. "Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review," Energy, Elsevier, vol. 76(C), pages 4-9.
    19. Knoblauch, Theresa A.K. & Trutnevyte, Evelina, 2018. "Siting enhanced geothermal systems (EGS): Heat benefits versus induced seismicity risks from an investor and societal perspective," Energy, Elsevier, vol. 164(C), pages 1311-1325.
    20. Simone Carr-Cornish & Lygia Romanach, 2014. "Differences in Public Perceptions of Geothermal Energy Technology in Australia," Energies, MDPI, vol. 7(3), pages 1-21, March.
    21. Bronfman, Nicolás C. & Jiménez, Raquel B. & Arévalo, Pilar C. & Cifuentes, Luis A., 2012. "Understanding social acceptance of electricity generation sources," Energy Policy, Elsevier, vol. 46(C), pages 246-252.
    22. Jones, Christopher R. & Richard Eiser, J., 2010. "Understanding 'local' opposition to wind development in the UK: How big is a backyard?," Energy Policy, Elsevier, vol. 38(6), pages 3106-3117, June.
    23. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
    24. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    25. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    26. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    27. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    28. Kerr, Sandy & Johnson, Kate & Weir, Stephanie, 2017. "Understanding community benefit payments from renewable energy development," Energy Policy, Elsevier, vol. 105(C), pages 202-211.
    29. Dowd, Anne-Maree & Boughen, Naomi & Ashworth, Peta & Carr-Cornish, Simone, 2011. "Geothermal technology in Australia: Investigating social acceptance," Energy Policy, Elsevier, vol. 39(10), pages 6301-6307, October.
    30. Pius Krütli & Michael Stauffacher & Thomas Flüeler & Roland W. Scholz, 2010. "Functional-dynamic public participation in technological decision-making: site selection processes of nuclear waste repositories," Journal of Risk Research, Taylor & Francis Journals, vol. 13(7), pages 861-875, October.
    31. Chamorro, César R. & García-Cuesta, José L. & Mondéjar, María E. & Pérez-Madrazo, Alfonso, 2014. "Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials," Energy, Elsevier, vol. 65(C), pages 250-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spampatti, Tobia & Hahnel, Ulf J.J. & Trutnevyte, Evelina & Brosch, Tobias, 2022. "Short and long-term dominance of negative information in shaping public energy perceptions: The case of shallow geothermal systems," Energy Policy, Elsevier, vol. 167(C).
    2. Escribano, Gonzalo & González-Enríquez, Carmen & Lázaro-Touza, Lara & Paredes-Gázquez, Juandiego, 2023. "An energy union without interconnections? Public acceptance of cross-border interconnectors in four European countries," Energy, Elsevier, vol. 266(C).
    3. Cousse, Julia & Trutnevyte, Evelina & Hahnel, Ulf J.J., 2021. "Tell me how you feel about geothermal energy: Affect as a revealing factor of the role of seismic risk on public acceptance," Energy Policy, Elsevier, vol. 158(C).
    4. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    5. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    3. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    6. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    7. Heras-Saizarbitoria, Iñaki & Zamanillo, Ibon & Laskurain, Iker, 2013. "Social acceptance of ocean wave energy: A case study of an OWC shoreline plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 515-524.
    8. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    9. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    10. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    12. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    13. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    14. Cousse, Julia & Trutnevyte, Evelina & Hahnel, Ulf J.J., 2021. "Tell me how you feel about geothermal energy: Affect as a revealing factor of the role of seismic risk on public acceptance," Energy Policy, Elsevier, vol. 158(C).
    15. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    16. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    17. Simón, Xavier & Copena, Damián & Montero, María, 2019. "Strong wind development with no community participation. The case of Galicia (1995–2009)," Energy Policy, Elsevier, vol. 133(C).
    18. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    19. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    20. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:807-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.