IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v149y2021ics0301421520307680.html
   My bibliography  Save this article

Operating reserve demand curve, scarcity pricing and intermittent generation: Lessons from the Texas ERCOT experience

Author

Listed:
  • Bajo-Buenestado, Raúl

Abstract

Resolving the resource adequacy problem has been usually entrusted to the imposition of some kind of long-term capacity requirements or to forward markets. The Operating Reserve Demand Curve (ORDC), which is linked to short-term market conditions and does not require central planning, has been presented as an alternative system with which to ensure long-term resource adequacy in the market. Using hourly data from the Texas ERCOT market between January 2015 and February 2019, we empirically show that ORDC prices are significantly negatively affected by wind generation. We find that, if wind generation is relatively low, a 1% increase in wind generation decreases the ORDC price by around 0.15–0.1%. This fact may preclude the ORDC from providing long-term price signals and price stability to generators. Moreover, we also find that if wind generation is greater than 9000 MW, the ORDC price is expected to be zero, which may further disincentive to increase generation capacity –especially dispatchable capacity that may be needed as a backup if the wind is not blowing.

Suggested Citation

  • Bajo-Buenestado, Raúl, 2021. "Operating reserve demand curve, scarcity pricing and intermittent generation: Lessons from the Texas ERCOT experience," Energy Policy, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307680
    DOI: 10.1016/j.enpol.2020.112057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520307680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levin, Todd & Botterud, Audun, 2015. "Electricity market design for generator revenue sufficiency with increased variable generation," Energy Policy, Elsevier, vol. 87(C), pages 392-406.
    2. Cao, Melanie & Wei, Jason, 2005. "Stock market returns: A note on temperature anomaly," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1559-1573, June.
    3. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. Sharon Maccini & Dean Yang, 2009. "Under the Weather: Health, Schooling, and Economic Consequences of Early-Life Rainfall," American Economic Review, American Economic Association, vol. 99(3), pages 1006-1026, June.
    6. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    7. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    8. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    9. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    10. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    11. Anthony PAPAVASILIOU & Yves SMEERS, 2017. "Remuneration of flexibility using operating reserve demand curves: a case study of Belgium," LIDAM Reprints CORE 2900, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    13. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    14. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    15. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    16. Swinand, Gregory P. & O'Mahoney, Amy, 2015. "Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland," Renewable Energy, Elsevier, vol. 75(C), pages 468-473.
    17. Zarnikau, J. & Zhu, S. & Woo, C.K. & Tsai, C.H., 2020. "Texas's operating reserve demand curve's generation investment incentive," Energy Policy, Elsevier, vol. 137(C).
    18. Höschle, Hanspeter & De Jonghe, Cedric & Le Cadre, Hélène & Belmans, Ronnie, 2017. "Electricity markets for energy, flexibility and availability — Impact of capacity mechanisms on the remuneration of generation technologies," Energy Economics, Elsevier, vol. 66(C), pages 372-383.
    19. William W. Hogan, 2013. "Electricity Scarcity Pricing Through Operating Reserves," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    20. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    21. Richard Green & Iain Staffell, 2016. "Electricity in Europe: exiting fossil fuels?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 32(2), pages 282-303.
    22. William Greene, 2002. "The Behavior of the Fixed Effects Estimator in Nonlinear Models," Working Papers 02-05, New York University, Leonard N. Stern School of Business, Department of Economics.
    23. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    24. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    25. Tsai, Chen-Hao & Eryilmaz, Derya, 2018. "Effect of wind generation on ERCOT nodal prices," Energy Economics, Elsevier, vol. 76(C), pages 21-33.
    26. Bellemare, Marc F. & Novak, Lindsey & Steinmetz, Tara L., 2015. "All in the family: Explaining the persistence of female genital cutting in West Africa," Journal of Development Economics, Elsevier, vol. 116(C), pages 252-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Mou, Yuting & Papavasiliou, Anthony & Hartz, Katharina & Dusolt, Alexander & Redl, Christian, 2023. "An analysis of shortage pricing and capacity remuneration mechanisms on the pan-European common energy market," Energy Policy, Elsevier, vol. 183(C).
    3. Huang, Zhenyu & Liu, Youbo & Li, Kecun & Liu, Jichun & Gao, Hongjun & Qiu, Gao & Shen, Xiaodong & Liu, Junyong, 2023. "Evaluating long-term profile of demand response under different market designs: A comparison of scarcity pricing and capacity auction," Energy, Elsevier, vol. 282(C).
    4. Wooyoung Jeon & Jungyoun Mo, 2023. "Estimating the Operating Reserve Demand Curve for Efficient Adoption of Renewable Sources in Korea," Energies, MDPI, vol. 16(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    3. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Chi Kong Chyong & Michael Pollitt & Reuben Cruise, 2019. "Can wholesale electricity prices support "subsidy-free" generation investment in Europe?," Working Papers EPRG1919, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    6. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    7. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    8. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    9. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    10. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).
    11. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    12. Muñoz, Francisco D. & Suazo-Martínez, Carlos & Pereira, Eduardo & Moreno, Rodrigo, 2021. "Electricity market design for low-carbon and flexible systems: Room for improvement in Chile," Energy Policy, Elsevier, vol. 148(PB).
    13. Gholami, Mina Bahrami & Poletti, Stephen & Staffell, Iain, 2021. "Wind, rain, fire and sun: Towards zero carbon electricity for New Zealand," Energy Policy, Elsevier, vol. 150(C).
    14. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    15. Milstein, Irena & Tishler, Asher, 2019. "On the effects of capacity payments in competitive electricity markets: Capacity adequacy, price cap, and reliability," Energy Policy, Elsevier, vol. 129(C), pages 370-385.
    16. Olukunle O. Owolabi & Toryn L. J. Schafer & Georgia E. Smits & Sanhita Sengupta & Sean E. Ryan & Lan Wang & David S. Matteson & Mila Getmansky Sherman & Deborah A. Sunter, 2021. "Role of Variable Renewable Energy Penetration on Electricity Price and its Volatility Across Independent System Operators in the United States," Papers 2112.11338, arXiv.org, revised Nov 2022.
    17. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
    18. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    19. Mou, Yuting & Papavasiliou, Anthony & Hartz, Katharina & Dusolt, Alexander & Redl, Christian, 2023. "An analysis of shortage pricing and capacity remuneration mechanisms on the pan-European common energy market," Energy Policy, Elsevier, vol. 183(C).
    20. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.

    More about this item

    Keywords

    Operating reserves; Resource adequacy; Scarcity pricing; Energy-only markets; Intermittency; Renewable energy;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520307680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.