IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v139y2020ics0301421520300136.html
   My bibliography  Save this article

Using insurance to manage reliability in the distributed electricity sector: Insights from an agent-based model

Author

Listed:
  • Fuentes, Rolando
  • Sengupta, Abhijit

Abstract

High penetration of distributed technologies would call for a different way to manage electricity reliability for semi-independent households. One option could be to allow customers to withdraw power from the grid when their home system fails. This behavior, however, could constitute an existential threat for utilities: if consumers use the network less, and continue to pay according to their usage, the utility might be unable to recover its costs. This paper investigates whether the creation of a reliability insurance market would help to deal with these concerns. We propose a business model where utilities offer insurance to semi-independent, yet risk averse households, against the prospect of a blackout, when a pay as you go system is no longer available. With the use of an Agent Based Model, we test if contracts from this market can converge into a theoretical optimal contract where bounded perception of risks and losses impact the price of insurance and potential revenues of utilities. We find that such a market could exist as consumers efficiently transfer all or a portion of their risk to the utility, based on their willingness to pay and risk profiles, which allows them to avoid blackouts at the margin.

Suggested Citation

  • Fuentes, Rolando & Sengupta, Abhijit, 2020. "Using insurance to manage reliability in the distributed electricity sector: Insights from an agent-based model," Energy Policy, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300136
    DOI: 10.1016/j.enpol.2020.111251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard Green and Iain Staffell, 2017. "Prosumage and the British Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Muller, Moritz & Sensfu[ss], Frank & Wietschel, Martin, 2007. "Simulation of current pricing-tendencies in the German electricity market for private consumption," Energy Policy, Elsevier, vol. 35(8), pages 4283-4294, August.
    3. Goerlich, Roland & Wirl, Franz, 2012. "Interdependencies between transport fuel demand, efficiency and quality: An application to Austria," Energy Policy, Elsevier, vol. 41(C), pages 47-58.
    4. Koesrinartoto, D. & Sun, Junjie & Tesfatsion, Leigh, 2005. "An agent-based computational laboratory for testing the economic reliability of wholesale power market designs," ISU General Staff Papers 200501010800001043, Iowa State University, Department of Economics.
    5. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    6. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    7. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    8. I.O. Walker & Franz Wirl, 1993. "Irreversible Price-Induced Efficiency Improvements: Theory and Empirical Application to Road Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 183-205.
    9. Hunt, Lester C. & Ryan, David L., 2015. "Economic modelling of energy services: Rectifying misspecified energy demand functions," Energy Economics, Elsevier, vol. 50(C), pages 273-285.
    10. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    11. Fuentes, Rolando & Blazquez, Jorge & Adjali, Iqbal, 2019. "From vertical to horizontal unbundling: A downstream electricity reliability insurance business model," Energy Policy, Elsevier, vol. 129(C), pages 796-804.
    12. Hämäläinen, Raimo P & Mäntysaari, Juha & Ruusunen, Jukka & Pierre-Olivier Pineau,, 2000. "Cooperative consumers in a deregulated electricity market — dynamic consumption strategies and price coordination," Energy, Elsevier, vol. 25(9), pages 857-875.
    13. John Bower & Derek W. Bunn, 2000. "Model-Based Comparisons of Pool and Bilateral Markets for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-29.
    14. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    15. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    16. Bower, John & Bunn, Derek W. & Wattendrup, Claus, 2001. "A model-based analysis of strategic consolidation in the German electricity industry," Energy Policy, Elsevier, vol. 29(12), pages 987-1005, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2021. "On the Design of an Insurance Mechanism for Reliability Differentiation in Electricity Markets," Papers 2106.14351, arXiv.org.
    2. Chi-Keung Woo & Jay Zarnikau & Asher Tishler & Kang Hua Cao, 2022. "Insuring a Small Retail Electric Provider’s Procurement Cost Risk in Texas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    3. Dongwei Zhao & Hao Wang & Jianwei Huang & Xiaojun Lin, 2022. "Insurance Contract for High Renewable Energy Integration," Papers 2209.10363, arXiv.org.
    4. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2023. "An Insurance Paradigm for Improving Power System Resilience via Distributed Investment," Papers 2302.01456, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    2. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    3. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    4. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    6. Rashidova E.A., 2017. "Agent-based modeling of wholesale electricity market," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 70-85.
    7. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    8. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    11. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    12. Sarıca, Kemal & Kumbaroğlu, Gürkan & Or, Ilhan, 2012. "Modeling and analysis of a decentralized electricity market: An integrated simulation/optimization approach," Energy, Elsevier, vol. 44(1), pages 830-852.
    13. Tao, Zhenmin & Moncada, Jorge Andrés & Poncelet, Kris & Delarue, Erik, 2021. "Review and analysis of investment decision making algorithms in long-term agent-based electric power system simulation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Bunn, Derek W. & Martoccia, Maria & Ochoa, Patricia & Kim, Haein & Ahn, Nam-Sung & Yoon, Yong-Beom, 2010. "Vertical integration and market power: A model-based analysis of restructuring in the Korean electricity market," Energy Policy, Elsevier, vol. 38(7), pages 3710-3716, July.
    15. Azadeh, A. & Skandari, M.R. & Maleki-Shoja, B., 2010. "An integrated ant colony optimization approach to compare strategies of clearing market in electricity markets: Agent-based simulation," Energy Policy, Elsevier, vol. 38(10), pages 6307-6319, October.
    16. Lester C Hunt & David L Ryan, 2014. "Catching on the Rebound: Why Price Elasticities are Generally Inappropriate Measures of Rebound Effects," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 148, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    17. Figus, Gioele & Swales, J.Kim & Turner, Karen, 2018. "Can Private Vehicle-augmenting Technical Progress Reduce Household and Total Fuel Use?," Ecological Economics, Elsevier, vol. 146(C), pages 136-147.
    18. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Sciences Po publications info:hdl:2441/53r60a8s3ku, Sciences Po.
    19. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    20. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    21. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    22. Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2017. "An analysis of the decline of electricity spot prices in Europe: Who is to blame?," Energy Policy, Elsevier, vol. 107(C), pages 323-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.