IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v133y2019ics0301421519304860.html
   My bibliography  Save this article

Deliberating the social acceptability of energy storage in the UK

Author

Listed:
  • Thomas, Gareth
  • Demski, Christina
  • Pidgeon, Nick

Abstract

Energy storage technologies are receiving increasing attention in the UK and around the world as a means of increasing penetration of inflexible low-carbon electricity generation and optimising investment in energy infrastructure required to meet international decarbonisation goals. Research into the social acceptability of energy infrastructure has compellingly illustrated the importance of societal perceptions in the successful deployment of new infrastructure. However to date, no study has empirically examined public perceptions across the broad range of storage technologies available. We address this gap by presenting qualitative findings from four deliberative workshops held with members of the British public. We show that citizens underestimate the challenge of growing volumes of inflexible low-carbon electricity generation, and respond to storage technologies through reference to commonly perceived risks and benefits. When participants discussed how storage might be funded and managed, additional evaluative criteria emerged centred around equity, vulnerability, independence and convenience. Our findings suggest that perceptions of storage technologies tend to be ambivalent, and that acceptance is likely to be contingent on whether storage technologies can be designed, regulated and governed in ways which reduce technical concerns over safety, environmental impacts and reliability, while meeting societal desires for equity and the protection of vulnerable groups.

Suggested Citation

  • Thomas, Gareth & Demski, Christina & Pidgeon, Nick, 2019. "Deliberating the social acceptability of energy storage in the UK," Energy Policy, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304860
    DOI: 10.1016/j.enpol.2019.110908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    3. Sovacool, Benjamin K. & Dworkin, Michael H., 2015. "Energy justice: Conceptual insights and practical applications," Applied Energy, Elsevier, vol. 142(C), pages 435-444.
    4. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    5. Butler, C. & Demski, C. & Parkhill, K. & Pidgeon, N. & Spence, A., 2015. "Public values for energy futures: Framing, indeterminacy and policy making," Energy Policy, Elsevier, vol. 87(C), pages 665-672.
    6. Lauren A. Fleishman & Wändi Bruine De Bruin & M. Granger Morgan, 2010. "Informed Public Preferences for Electricity Portfolios with CCS and Other Low‐Carbon Technologies," Risk Analysis, John Wiley & Sons, vol. 30(9), pages 1399-1410, September.
    7. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    8. Day, Rosie & Walker, Gordon & Simcock, Neil, 2016. "Conceptualising energy use and energy poverty using a capabilities framework," Energy Policy, Elsevier, vol. 93(C), pages 255-264.
    9. Evensen, Darrick & Demski, Christina & Becker, Sarah & Pidgeon, Nick, 2018. "The relationship between justice and acceptance of energy transition costs in the UK," Applied Energy, Elsevier, vol. 222(C), pages 451-459.
    10. Bart W. Terwel & Fieke Harinck & Naomi Ellemers & Dancker D. L. Daamen, 2009. "Competence‐Based and Integrity‐Based Trust as Predictors of Acceptance of Carbon Dioxide Capture and Storage (CCS)," Risk Analysis, John Wiley & Sons, vol. 29(8), pages 1129-1140, August.
    11. Apt, Jay & Fischhoff, Baruch, 2006. "Power and People," The Electricity Journal, Elsevier, vol. 19(9), pages 17-25, November.
    12. Cohen, Jed J. & Reichl, Johannes & Schmidthaler, Michael, 2014. "Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review," Energy, Elsevier, vol. 76(C), pages 4-9.
    13. Bell, Keith & Gill, Simon, 2018. "Delivering a highly distributed electricity system: Technical, regulatory and policy challenges," Energy Policy, Elsevier, vol. 113(C), pages 765-777.
    14. Christian Oltra & Paul Upham & Hauke Riesch & Àlex Boso & Suzanne Brunsting & Elisabeth Dütschke & Aleksandra Lis, 2012. "Public Responses to Co2 Storage Sites: Lessons from Five European Cases," Energy & Environment, , vol. 23(2-3), pages 227-248, May.
    15. Sherry-Brennan, Fionnguala & Devine-Wright, Hannah & Devine-Wright, Patrick, 2010. "Public understanding of hydrogen energy: A theoretical approach," Energy Policy, Elsevier, vol. 38(10), pages 5311-5319, October.
    16. Phil Macnaghten, 2010. "Researching Technoscientific Concerns in the Making: Narrative Structures, Public Responses, and Emerging Nanotechnologies," Environment and Planning A, , vol. 42(1), pages 23-37, January.
    17. Rogers, J.C. & Simmons, E.A. & Convery, I. & Weatherall, A., 2008. "Public perceptions of opportunities for community-based renewable energy projects," Energy Policy, Elsevier, vol. 36(11), pages 4217-4226, November.
    18. Robert Flynn & Miriam Ricci & Paul Bellaby, 2013. "Deliberation over new hydrogen energy technologies: evidence from two Citizens' Panels in the UK," Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 379-391, April.
    19. Wylie Carr & Christopher Preston & Laurie Yung & Bronislaw Szerszynski & David Keith & Ashley Mercer, 2013. "Public engagement on solar radiation management and why it needs to happen now," Climatic Change, Springer, vol. 121(3), pages 567-577, December.
    20. Scheer, Dirk & Konrad, Wilfried & Wassermann, Sandra, 2017. "The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany," Energy Policy, Elsevier, vol. 100(C), pages 89-100.
    21. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    22. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    23. Devine-Wright, Patrick & Devine-Wright, Hannah & Sherry-Brennan, Fionnguala, 2010. "Visible technologies, invisible organisations: An empirical study of public beliefs about electricity supply networks," Energy Policy, Elsevier, vol. 38(8), pages 4127-4134, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amar Hisham Jaaffar & Nurshahirah Abd Majid & Bakhtiar Alrazi & Vigna K. Ramachandaramurty & Nofri Yenita Dahlan, 2022. "Determinants of Residential Consumers’ Acceptance of a Utility-Scale Battery Energy Storage System in Malaysia: Technology Acceptance Model Theory from a Different Perspective," Energies, MDPI, vol. 15(16), pages 1-17, August.
    2. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Jindal, Abhinav & Shrimali, Gireesh, 2022. "At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Nascimento, Viviane Tavares & Gimenes, Patricia Albuquerque & Morales Udaeta, Miguel Edgar & Veiga Gimenes, André L. & Riboldi, Victor Baiochi & Ji, Tuo, 2023. "Transition mapping for modern energy service provision under uncertainty: A case study from Brazil," Utilities Policy, Elsevier, vol. 84(C).
    6. Pepa Ambrosio-Albalá & Catherine S. E. Bale & Andrew J. Pimm & Peter G. Taylor, 2020. "What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    8. Sanneke Kloppenburg & Robin Smale & Nick Verkade, 2019. "Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions," Energies, MDPI, vol. 12(22), pages 1-15, November.
    9. Familia, Thomas & Horne, Christine, 2022. "Customer trust in their utility company and interest in household-level battery storage," Applied Energy, Elsevier, vol. 324(C).
    10. Maurizio Sibilla & Esra Kurul, 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective," Energies, MDPI, vol. 16(19), pages 1-11, September.
    11. Laxmi Gupta & Ravi Shankar, 2022. "Adoption of Battery Management System in Utility Grid: An Empirical Study Using Structural Equation Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 573-596, December.
    12. Boyle, Evan & Galvin, Martin & Revez, Alexandra & Deane, Aoife & Ó Gallachóir, Brian & Mullally, Gerard, 2022. "Flexibility & structure: Community engagement on climate action & large infrastructure delivery," Energy Policy, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Sharpton, Tara & Lawrence, Thomas & Hall, Margeret, 2020. "Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Amanda D Boyd & Jiawei Liu & Jay D Hmielowski, 2019. "Public support for energy portfolios in Canada: How information about cost and national energy portfolios affect perceptions of energy systems," Energy & Environment, , vol. 30(2), pages 322-340, March.
    5. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    6. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    8. Debnath, R. & Bardhan, R. & Darby, S. & Mohaddes, K. & Sunikka-Blank, M. & Coelho, A C V. & Isa, A., 2020. "A deep-narrative analysis of energy cultures in slum rehabilitation housing of Abuja, Mumbai and Rio de Janeiro for just policy design," Cambridge Working Papers in Economics 20101, Faculty of Economics, University of Cambridge.
    9. József Kádár & Martina Pilloni & Tareq Abu Hamed, 2023. "A Survey of Renewable Energy, Climate Change, and Policy Awareness in Israel: The Long Path for Citizen Participation in the National Renewable Energy Transition," Energies, MDPI, vol. 16(5), pages 1-16, February.
    10. Fortier, Marie-Odile P. & Teron, Lemir & Reames, Tony G. & Munardy, Dynta Trishana & Sullivan, Breck M., 2019. "Introduction to evaluating energy justice across the life cycle: A social life cycle assessment approach," Applied Energy, Elsevier, vol. 236(C), pages 211-219.
    11. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    15. Ocelík, Petr & Osička, Jan & Zapletalová, Veronika & Černoch, Filip & Dančák, Břetislav, 2017. "Local opposition and acceptance of a deep geological repository of radioactive waste in the Czech Republic: A frame analysis," Energy Policy, Elsevier, vol. 105(C), pages 458-466.
    16. Pilar Murias & Beatriz Valcárcel-Aguiar & Rosa María Regueiro-Ferreira, 2020. "A Territorial Estimate for Household Energy Vulnerability: An Application for Spain," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    17. Galvin, Ray, 2018. "‘Them and us’: Regional-national power-plays in the German energy transformation: A case study in Lower Franconia," Energy Policy, Elsevier, vol. 113(C), pages 269-277.
    18. Ikejemba, Eugene C.X. & Schuur, Peter C. & Van Hillegersberg, Jos & Mpuan, Peter B., 2017. "Failures & generic recommendations towards the sustainable management of renewable energy projects in Sub-Saharan Africa (Part 2 of 2)," Renewable Energy, Elsevier, vol. 113(C), pages 639-647.
    19. Jones, Christopher R. & Richard Eiser, J., 2010. "Understanding 'local' opposition to wind development in the UK: How big is a backyard?," Energy Policy, Elsevier, vol. 38(6), pages 3106-3117, June.
    20. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.