IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v122y2018icp84-96.html
   My bibliography  Save this article

Turkish energy sector development and the Paris Agreement goals: A CGE model assessment

Author

Listed:
  • Kat, Bora
  • Paltsev, Sergey
  • Yuan, Mei

Abstract

In the 2015 Paris Agreement, Turkey pledged to reduce greenhouse gas (GHG) emissions by 21% by 2030 relative to business-as-usual (BAU). We expect that fulfilling this pledge will likely require a reduced reliance on fossil-based energy and additional investments in low-carbon energy sources. To fully assess these impacts, we develop a computable general equilibrium (CGE) model of the Turkish economy that combines macroeconomic representation of non-electric sectors with a detailed power sector representation. We analyze several scenarios to assess the impact of an emission trading scheme: one including the planned nuclear development and a renewable subsidy scheme (BAU), and another with no nuclear technology allowed (NoN). Our assessment shows that in 2030, without policy, primary energy will be mainly oil, natural gas and coal. Under an emission trading scheme, however, coal-fired power generation vanishes by 2030 in both BAU and NoN due to the high cost of carbon. With nuclear (BAU), GHG emissions are 3.1% lower than NoN due to the resulting energy mix, allowing for a lower carbon price ($50/tCO2 in BAU compared to $70/tCO2 in NoN). Our results suggest that fulfillment of Turkey's pledge may be possible at a modest economic cost of about 0.8–1% by 2030.

Suggested Citation

  • Kat, Bora & Paltsev, Sergey & Yuan, Mei, 2018. "Turkish energy sector development and the Paris Agreement goals: A CGE model assessment," Energy Policy, Elsevier, vol. 122(C), pages 84-96.
  • Handle: RePEc:eee:enepol:v:122:y:2018:i:c:p:84-96
    DOI: 10.1016/j.enpol.2018.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518304774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Telli, Çagatay & Voyvoda, Ebru & Yeldan, Erinç, 2008. "Economics of environmental policy in Turkey: A general equilibrium investigation of the economic evaluation of sectoral emission reduction policies for climate change," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 321-340.
    3. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    4. Jeffrey C Peters, 2016. "The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 209-250, June.
    5. Akın Olçum, Gökçe & Yeldan, Erinç, 2013. "Economic impact assessment of Turkey's post-Kyoto vision on emission trading," Energy Policy, Elsevier, vol. 60(C), pages 764-774.
    6. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    8. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    9. Lars Mathiesen, 1985. "Computational Experience in Solving Equilibrium Models by a Sequence of Linear Complementarity Problems," Operations Research, INFORMS, vol. 33(6), pages 1225-1250, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    2. Botero García, Jesús Alonso & Gonzalez-Auhing, Marcos & Hurtado Rendón, Álvaro, 2021. "Towards a low-emissions economy: The role of abatement targets and carbon taxes," Conference papers 333303, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Sevil Acar & Ahmet Atıl Aşıcı & A. Erinç Yeldan, 2022. "Potential effects of the EU’s carbon border adjustment mechanism on the Turkish economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8162-8194, June.
    4. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    5. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    6. Gungor, Gorkem & Sari, Ramazan, 2022. "Nuclear power and climate policy integration in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    8. Alkan, Ayla & Oğuş-Binatlı, Ayla, 2021. "Is Production or Consumption the Determiner? Sources of Turkey’s CO2 Emissions between 1990-2015 and Policy Implications," MPRA Paper 111635, University Library of Munich, Germany, revised 11 Feb 2021.
    9. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    10. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    11. Erisa Dautaj Şenerdem & K. Ali Akkemik, 2020. "Evaluation of the reform in the Turkish electricity sector: a CGE analysis," International Journal of Economic Policy Studies, Springer, vol. 14(2), pages 389-419, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    2. Rausch, Sebastian & Yonezawa, Hidemichi, 2023. "Green technology policies versus carbon pricing: An intergenerational perspective," European Economic Review, Elsevier, vol. 154(C).
    3. Hui-Chih Chai & Wei-Hong Hong & John M. Reilly & Sergey Paltsev & Y.-H. Henry Chen, 2019. "Will Greenhouse Gases Mitigation Policies Abroad Affect The Domestic Economy? The Case Of Taiwan," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-26, November.
    4. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
    5. Kat, Bora & Paltsev, Sergey & Yuan, Mei, 2017. "An Assessment of Turkish Energy Sector Development under the Paris Agreement Goals using a CGE Model with Detailed Representation of Power Sector," Conference papers 332822, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Arun Singh & Niven Winchester & Valerie J. Karplus, 2019. "Evaluating India’S Climate Targets: The Implications Of Economy-Wide And Sector-Specific Policies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-29, August.
    7. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    8. Niven Winchester & John M. Reilly, 2019. "The Economic, Energy, And Emissions Impacts Of Climate Policy In South Korea," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-23, August.
    9. Bruno Lanz & Thomas F. Rutherford, 2016. "GTAPINGAMS, version 9: Multiregional and small open economy models with alternative demand systems," IRENE Working Papers 16-08, IRENE Institute of Economic Research.
    10. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    11. Niven Winchester, 2018. "Can tariffs be used to enforce Paris climate commitments?," The World Economy, Wiley Blackwell, vol. 41(10), pages 2650-2668, October.
    12. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    13. Chen, Y.-H. Henry & Reilly, John & Paltsev, Sergey, 2018. "Did the shale gas boom reduce US CO2 emissions?," Conference papers 332954, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Yuan, Mei & Metcalf, Gilbert & Reilly, John & Paltsev, Sergey, 2017. "Impacts of Costs of Advanced Technologies and Carbon Tax Rates on Revenue," Conference papers 332864, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Hong, Wei-Hong & Chai, Hui-Chih & Chen, Y.-H. Henry & Reilly, John & Paltsev, Sergey, 2019. "Implications of Updating the Input-output Database of a Computable General Equilibrium Model on Emissions Mitigation Policy Analyses," Conference papers 333019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Landis, Florian & Rausch, Sebastian, 2017. "Deep transformations of the energy sector: A model of technology investment choice," Energy Economics, Elsevier, vol. 68(S1), pages 136-147.
    17. Sebastian Rausch & Hidemichi Yonezawa, 2018. "The Intergenerational Incidence Of Green Tax Reform," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    18. Yerushalmi, Erez, 2012. "Measuring the administrative water allocation mechanism and agricultural amenities," Economic Research Papers 270633, University of Warwick - Department of Economics.
    19. Zhang, Xiaohan & Winchester, Niven & Zhang, Xiliang, 2017. "The future of coal in China," Energy Policy, Elsevier, vol. 110(C), pages 644-652.
    20. Florian Landis & Sebastian Rausch & Mirjam Kosch, 2018. "Differentiated Carbon Prices and the Economic Cost of Decarbonization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 483-516, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:122:y:2018:i:c:p:84-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.