IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v113y2018icp348-355.html
   My bibliography  Save this article

Energy policy reforms in the Serbian oil sector: An update

Author

Listed:
  • Maricic, Vesna Karovic
  • Danilovic, Dusan
  • Lekovic, Branko
  • Crnogorac, Miroslav

Abstract

Since 2012, when Serbia became a candidate for European Union membership, the harmonization of the Serbian energy policy regulatory framework in compliance with EU energy acquis has been accelerating. An umbrella framework adopted recently as a basis for conducting reforms in all Serbian energy sub-sectors involves a new Energy law that transpose the EU Third Energy Package and a new Energy Development Strategy of Serbia by 2025, with projections to 2030. The priorities of Serbian energy policy are increasing energy security supply, the further development of the energy market, and provision of sustainable energy development. The adopted strategic objectives for the oil sector are: providing a secured supply on the domestic market in petroleum products whose quality meets the highest EU standards; reduction of import dependency, and securing new crude oil supply routes. This paper provides an overview of the Serbian oil sector reforming progress concerning adoption of new legislation relating to key issues for adjustment with EU directives. Also, it represents new activities and major development projects in the oil sector, including projects that contribute to the development of the Serbian oil sector on the principles of sustainability.

Suggested Citation

  • Maricic, Vesna Karovic & Danilovic, Dusan & Lekovic, Branko & Crnogorac, Miroslav, 2018. "Energy policy reforms in the Serbian oil sector: An update," Energy Policy, Elsevier, vol. 113(C), pages 348-355.
  • Handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:348-355
    DOI: 10.1016/j.enpol.2017.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517307504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aboobacker, V.M. & Shanas, P.R. & Alsaafani, M.A. & Albarakati, Alaa M.A., 2017. "Wave energy resource assessment for Red Sea," Renewable Energy, Elsevier, vol. 114(PA), pages 46-58.
    2. Emerson, Sarah A., 2006. "When should we use strategic oil stocks?," Energy Policy, Elsevier, vol. 34(18), pages 3377-3386, December.
    3. Radovanović, Mirjana & Filipović, Sanja & Pavlović, Dejan, 2017. "Energy security measurement – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1020-1032.
    4. Tosun, Jale, 2011. "When the grace period is over: Assessing the new Member States' compliance with EU requirements for oil stockholding," Energy Policy, Elsevier, vol. 39(11), pages 7156-7164.
    5. ., 2017. "The Global Energy System," Chapters, in: Global Infrastructure Networks, chapter 5, pages 155-207, Edward Elgar Publishing.
    6. Gvozdenac, Dušan & Urošević, Branka Gvozdenac & Menke, Christoph & Urošević, Dragan & Bangviwat, Athikom, 2017. "High efficiency cogeneration: CHP and non-CHP energy," Energy, Elsevier, vol. 135(C), pages 269-278.
    7. García-Álvarez, María Teresa & Moreno, Blanca & Soares, Isabel, 2016. "Analyzing the environmental and resource pressures from European energy activity: A comparative study of EU member states," Energy, Elsevier, vol. 115(P2), pages 1375-1384.
    8. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    9. Karovic Maricic, Vesna & Danilovic, Dusan & Lekovic, Branko, 2012. "Serbian oil sector: A new energy policy regulatory framework and development strategies," Energy Policy, Elsevier, vol. 51(C), pages 312-322.
    10. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    11. David Van Den Dooren & Thomas Sys & Túlio A. M. Toffolo & Tony Wauters & Greet Vanden Berghe, 2017. "Multi-machine energy-aware scheduling," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 285-307, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villca-Pozo, Milenka & Gonzales-Bustos, Juan Pablo, 2019. "Tax incentives to modernize the energy efficiency of the housing in Spain," Energy Policy, Elsevier, vol. 128(C), pages 530-538.
    2. Xuluo Yin & Jiangang Peng & Tian Tang, 2018. "Improving the Forecasting Accuracy of Crude Oil Prices," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
    3. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Renewable Energy in Urban Areas: Worldwide Research Trends," Energies, MDPI, vol. 11(3), pages 1-19, March.
    4. Juan Li & Keyin Liu & Zixin Yang & Yi Qu, 2023. "Evolution and Impacting Factors of Global Renewable Energy Products Trade Network: An Empirical Investigation Based on ERGM Model," Sustainability, MDPI, vol. 15(11), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    2. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    3. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    5. Cornago, Elisabetta & Dressler, Luisa, 2020. "Incentives to (not) disclose energy performance information in the housing market," Resource and Energy Economics, Elsevier, vol. 61(C).
    6. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    7. World Bank Group, 2018. "Commodity Markets Outlook, April 2018," World Bank Publications - Books, The World Bank Group, number 29721, December.
    8. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    9. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2019. "Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 111-135.
    10. Lee, Rachel & Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2019. "A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid," Applied Energy, Elsevier, vol. 236(C), pages 961-972.
    11. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    12. Pandžić, H. & Dvorkin, Y. & Carrión, M., 2018. "Investments in merchant energy storage: Trading-off between energy and reserve markets," Applied Energy, Elsevier, vol. 230(C), pages 277-286.
    13. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    14. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    15. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    16. Karovic Maricic, Vesna & Danilovic, Dusan & Lekovic, Branko, 2012. "Serbian oil sector: A new energy policy regulatory framework and development strategies," Energy Policy, Elsevier, vol. 51(C), pages 312-322.
    17. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    18. Hoffman, Lauren A. & Ngo, Truc T., 2018. "Affordable solar thermal water heating solution for rural Dominican Republic," Renewable Energy, Elsevier, vol. 115(C), pages 1220-1230.
    19. Ediger, Volkan Ş. & Kirkil, Gokhan & Çelebi, Emre & Ucal, Meltem & Kentmen-Çin, Çiğdem, 2018. "Turkish public preferences for energy," Energy Policy, Elsevier, vol. 120(C), pages 492-502.
    20. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:348-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.