IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v100y2017icp162-169.html
   My bibliography  Save this article

Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation

Author

Listed:
  • McKellar, Jennifer M.
  • Sleep, Sylvia
  • Bergerson, Joule A.
  • MacLean, Heather L.

Abstract

The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies.

Suggested Citation

  • McKellar, Jennifer M. & Sleep, Sylvia & Bergerson, Joule A. & MacLean, Heather L., 2017. "Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation," Energy Policy, Elsevier, vol. 100(C), pages 162-169.
  • Handle: RePEc:eee:enepol:v:100:y:2017:i:c:p:162-169
    DOI: 10.1016/j.enpol.2016.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516305596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S.J., 2017. "The structure of the climate debate," Energy Policy, Elsevier, vol. 104(C), pages 431-438.
    2. Rao, Anand B. & Rubin, Edward S. & Keith, David W. & Granger Morgan, M., 2006. "Evaluation of potential cost reductions from improved amine-based CO2 capture systems," Energy Policy, Elsevier, vol. 34(18), pages 3765-3772, December.
    3. Diaz Anadon, Laura & Nemet, Gregory & Verdolini, Elena, 2013. "The Future Costs of Nuclear Power Using Multiple Expert Elicitations: Effects of RD&D and Elicitation Design," Climate Change and Sustainable Development 158747, Fondazione Eni Enrico Mattei (FEEM).
    4. Harrison Hong & Frank Weikai Li & Jiangmin Xu, 2016. "Climate Risks and Market Efficiency," NBER Working Papers 22890, National Bureau of Economic Research, Inc.
    5. James E. H. Davidson & David B. Stephenson & Alemtsehai A. Turasie, 2016. "Time series modeling of paleoclimate data," Environmetrics, John Wiley & Sons, Ltd., vol. 27(1), pages 55-65, February.
    6. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    7. Mark A Burgman & Marissa McBride & Raquel Ashton & Andrew Speirs-Bridge & Louisa Flander & Bonnie Wintle & Fiona Fidler & Libby Rumpff & Charles Twardy, 2011. "Expert Status and Performance," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    8. World Bank & IFC & MIGA, 2016. "World Bank Group Climate Change Action Plan 2016-2020," World Bank Publications - Books, The World Bank Group, number 24451, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teti, Emanuele & Dallocchio, Maurizio & De Sanctis, Daniele, 2020. "Effects of oil price fall on the betas in the Unconventional Oil & Gas Industry," Energy Policy, Elsevier, vol. 144(C).
    2. Si, Minxing & Bai, Ling & Du, Ke, 2021. "Fuel consumption analysis and cap and trade system evaluation for Canadian in situ oil sands extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Charlotte Y. Stanton & Katharine J. Mach & Peter A. Turner & Seth J. Lalonde & Daniel L. Sanchez & Christopher B. Field, 2018. "Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California," Climatic Change, Springer, vol. 147(3), pages 633-646, April.
    4. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finnegan, Stephen & Sharples, Steve & Johnston, Tom & Fulton, Matt, 2018. "The carbon impact of a UK safari park – Application of the GHG protocol using measured energy data," Energy, Elsevier, vol. 153(C), pages 256-264.
    2. Liu, Chao & Akintayo, Adedotun & Jiang, Zhanhong & Henze, Gregor P. & Sarkar, Soumik, 2018. "Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network," Applied Energy, Elsevier, vol. 211(C), pages 1106-1122.
    3. Rutty, Michelle & Scott, Daniel & Johnson, Peter & Pons, Marc & Steiger, Robert & Vilella, Marc, 2017. "Using ski industry response to climatic variability to assess climate change risk: An analogue study in Eastern Canada," Tourism Management, Elsevier, vol. 58(C), pages 196-204.
    4. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    5. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    6. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    7. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Too Early to Pick Winners: Disagreement across Experts Implies the Need to Diversify R&D Investment," Working Papers 2016.22, Fondazione Eni Enrico Mattei.
    8. Devendraraj Madhanagopal & Sarmistha Pattanaik, 2020. "Exploring fishermen’s local knowledge and perceptions in the face of climate change: the case of coastal Tamil Nadu, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3461-3489, April.
    9. Masoud Saatsaz, 2020. "A historical investigation on water resources management in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1749-1785, March.
    10. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    11. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    12. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    13. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    14. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    15. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    16. Arif Ullah & Kashif Raza & Muhammad Nadeem & Usman Mehmood & Ephraim Bonah Agyekum & Mohamed F. Elnaggar & Ebenezer Agbozo & Salah Kamel, 2022. "Does Globalization Cause Greenhouse Gas Emissions in Pakistan? A Promise to Enlighten the Value of Environmental Quality," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    17. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    18. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. Stefano Giglio & Bryan Kelly & Johannes Stroebel, 2021. "Climate Finance," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 15-36, November.
    20. Francesca Marchetta & David E Sahn & Luca Tiberti, 2019. "The Role of Weather on Schooling and Work of Young Adults in Madagascar," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1203-1227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:100:y:2017:i:c:p:162-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.