IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v90y2020ics0140988320302036.html
   My bibliography  Save this article

Estimating co-pollutant benefits from climate change policies in the electricity sector: A regression approach

Author

Listed:
  • Zirogiannis, Nikolaos
  • Simon, Daniel H.
  • Hollingsworth, Alex J.

Abstract

We use data from US power plants and a regression based approach to empirically estimate the marginal rate of co-pollutant emission reductions resulting from a mass-based carbon reduction policy for electricity producers. The standard approach to estimating co-pollutant reductions uses Linear Programming Models. These models require millions of input variables and constraints, resulting in long computational times and an opaque simulation process, while yielding only point estimates for key variables of interest. Our regression-based approach has far fewer data requirements, needs less computational resources, and produces estimates with confidence intervals that capture estimation uncertainty. Moreover, it is straightforward and transparent to implement and provides a larger range of potential outcomes for policy makers to consider. Our results indicate that a 1% decrease in electricity output from coal (gas) power plants would reduce SO2 by 0.6% and NOx by 0.8% (0.7%). These are not statistically significant different than estimates reported by the Environmental Protection Agency (EPA). We estimate that reducing electricity output enough to reduce CO2 emissions by one ton yields health benefits of $15.33 from NOx reductions and $59.64 from SO2 reductions.

Suggested Citation

  • Zirogiannis, Nikolaos & Simon, Daniel H. & Hollingsworth, Alex J., 2020. "Estimating co-pollutant benefits from climate change policies in the electricity sector: A regression approach," Energy Economics, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:eneeco:v:90:y:2020:i:c:s0140988320302036
    DOI: 10.1016/j.eneco.2020.104863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320302036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Ehrenmann, Andreas & Butler, Lucy & Cust, Jim & Hoexter, Harriet & Keats, Kim & Kreczko, Adam & Sinden, Graham, 2008. "Space and time: Wind in an investment planning model," Energy Economics, Elsevier, vol. 30(4), pages 1990-2008, July.
    2. Alex Hollingsworth & Ivan Rudik, 2019. "External Impacts of Local Energy Policy: The Case of Renewable Portfolio Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(1), pages 187-213.
    3. Dallas Burtraw & Alan Krupnick & Erin Mansur & David Austin & Deirdre Farrell, 1998. "Costs And Benefits Of Reducing Air Pollutants Related To Acid Rain," Contemporary Economic Policy, Western Economic Association International, vol. 16(4), pages 379-400, October.
    4. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    5. Sébastien Dessus & David O'Connor, 2003. "Climate Policy without Tears CGE-Based Ancillary Benefits Estimates for Chile," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 287-317, July.
    6. Fullerton, Don & Ta, Chi L., 2019. "Environmental policy on the back of an envelope: A Cobb-Douglas model is not just a teaching tool," Energy Economics, Elsevier, vol. 84(S1).
    7. Elinor Ostrom, 2014. "A Polycentric Approach For Coping With Climate Change," Annals of Economics and Finance, Society for AEF, vol. 15(1), pages 97-134, May.
    8. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 132(4), pages 739-739, October.
    9. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    10. Beasley, Blair & Woerman, Matt & Paul, Anthony & Burtraw, Dallas & Palmer, Karen, 2013. "Mercury and Air Toxics Standards Analysis Deconstructed: Changing Assumptions, Changing Results," RFF Working Paper Series dp-13-10, Resources for the Future.
    11. Sözen, Adnan & Alp, Ihsan, 2009. "Comparison of Turkey's performance of greenhouse gas emissions and local/regional pollutants with EU countries," Energy Policy, Elsevier, vol. 37(12), pages 5007-5018, December.
    12. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    13. Charles T. Driscoll & Jonathan J. Buonocore & Jonathan I. Levy & Kathleen F. Lambert & Dallas Burtraw & Stephen B. Reid & Habibollah Fakhraei & Joel Schwartz, 2015. "US power plant carbon standards and clean air and health co-benefits," Nature Climate Change, Nature, vol. 5(6), pages 535-540, June.
    14. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    15. Jaglom, Wendy S. & McFarland, James R. & Colley, Michelle F. & Mack, Charlotte B. & Venkatesh, Boddu & Miller, Rawlings L. & Haydel, Juanita & Schultz, Peter A. & Perkins, Bill & Casola, Joseph H. & M, 2014. "Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model®," Energy Policy, Elsevier, vol. 73(C), pages 524-539.
    16. Ekin, Paul, 1996. "The secondary benefits of CO2 abatement: How much emission reduction do they justify?," Ecological Economics, Elsevier, vol. 16(1), pages 13-24, January.
    17. Sanya Carley & Lincoln L. Davies & David B. Spence & Nikolaos Zirogiannis, 2018. "Empirical evaluation of the stringency and design of renewable portfolio standards," Nature Energy, Nature, vol. 3(9), pages 754-763, September.
    18. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    19. Carl, Jeremy & Fedor, David, 2016. "Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world," Energy Policy, Elsevier, vol. 96(C), pages 50-77.
    20. Oecd, 2016. "Documents and legal texts," Nuclear Law Bulletin, OECD Publishing, vol. 2016(1), pages 105-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    2. Finus, Michael & Rubbelke, Dirk T G, 2008. "Coalition Formation and the Ancillary Benefits of Climate Policy," Stirling Economics Discussion Papers 2008-13, University of Stirling, Division of Economics.
    3. Simon, Daniel H. & Zirogiannis, Nikolaos & Hollingsworth, Alex, 2017. "Estimating Co-pollutant Benefits from Climate Change Policies in the Electricity Sector: An Empirical Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259116, Agricultural and Applied Economics Association.
    4. Kyle Lesinger & Di Tian & Courtney P. Leisner & Alvaro Sanz-Saez, 2020. "Impact of climate change on storage conditions for major agricultural commodities across the contiguous United States," Climatic Change, Springer, vol. 162(3), pages 1287-1305, October.
    5. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    6. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    7. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    8. Michael Finus & Dirk Rübbelke, 2013. "Public Good Provision and Ancillary Benefits: The Case of Climate Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 211-226, October.
    9. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    11. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    12. J. West & Arlene Fiore & Larry Horowitz, 2012. "Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality," Climatic Change, Springer, vol. 114(3), pages 441-461, October.
    13. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    14. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    15. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    16. Rubbelke, Dirk T.G. & Rive, Nathan, 2008. "Effects of the CDM on Poverty Eradication and Global Climate Protection," Climate Change Modelling and Policy Working Papers 46650, Fondazione Eni Enrico Mattei (FEEM).
    17. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    18. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    19. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    20. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.

    More about this item

    Keywords

    Co-pollutants; Health co-benefits; Climate change; Electricity generation;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:90:y:2020:i:c:s0140988320302036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.