IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i3d10.1007_s10584-020-02873-5.html
   My bibliography  Save this article

Impact of climate change on storage conditions for major agricultural commodities across the contiguous United States

Author

Listed:
  • Kyle Lesinger

    (Auburn University)

  • Di Tian

    (Auburn University)

  • Courtney P. Leisner

    (Auburn University)

  • Alvaro Sanz-Saez

    (Auburn University)

Abstract

Changes in postharvest storage conditions due to climate change can directly affect energy usage and food supply and quality. However, no study has assessed climate change impacts on postharvest storage conditions in different climate regions over the contiguous United States (CONUS), a major agricultural producer around the world. The goal of this study is to assess the impact of climate change on cold storage conditions for the highest grossing crop for each of the nine climate regions within the CONUS. Storage degree days (SDDs) accumulate when ambient temperatures increase relative to crop storage base temperatures. Changes in SDDs and winter subperiod length were calculated for each regional crop using historical climate data and 20 downscaled global climate model projections. All regions project significant increases in SDD accumulation and decreases in winter subperiod length when compared with the historical reference period (1979–2005). Between years 2020 and 2080, Northwest and Northeast regions’ apples will be impacted most by SDD accumulation with yearly increases between 261 and 1004 SDDs. Between years 2020 and 2080, Midwest regions’ potatoes are projected to lose the most days of winter (24–39 days), and Southeast regions’ peanuts will experience the greatest decrease in winter length (17–23%). Increases in SDD accumulation and decreases in winter length will have direct implications on future food supply and storage costs. This study is the first comprehensive analysis of climate change impacts on the storage conditions for agricultural commodities over heterogenous climate conditions at national scale, providing useful information for long-term agricultural storage planning.

Suggested Citation

  • Kyle Lesinger & Di Tian & Courtney P. Leisner & Alvaro Sanz-Saez, 2020. "Impact of climate change on storage conditions for major agricultural commodities across the contiguous United States," Climatic Change, Springer, vol. 162(3), pages 1287-1305, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02873-5
    DOI: 10.1007/s10584-020-02873-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02873-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02873-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 132(4), pages 739-739, October.
    2. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    3. Julie A. Winkler & Logan Soldo & Ying Tang & Todd Forbush & David S. Douches & Chris M. Long & Courtney P. Leisner & C. Robin Buell, 2018. "Potential impacts of climate change on storage conditions for commercial agriculture: an example for potato production in Michigan," Climatic Change, Springer, vol. 151(2), pages 275-287, November.
    4. Jaglom, Wendy S. & McFarland, James R. & Colley, Michelle F. & Mack, Charlotte B. & Venkatesh, Boddu & Miller, Rawlings L. & Haydel, Juanita & Schultz, Peter A. & Perkins, Bill & Casola, Joseph H. & M, 2014. "Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model®," Energy Policy, Elsevier, vol. 73(C), pages 524-539.
    5. Julie A. Winkler, 2016. "Embracing Complexity and Uncertainty," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1418-1433, November.
    6. Amir Shabbar & Barrie Bonsal, 2003. "An Assessment of Changes in Winter Cold and Warm Spells over Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 173-188, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie A. Winkler & Logan Soldo & Ying Tang & Todd Forbush & David S. Douches & Chris M. Long & Courtney P. Leisner & C. Robin Buell, 2018. "Potential impacts of climate change on storage conditions for commercial agriculture: an example for potato production in Michigan," Climatic Change, Springer, vol. 151(2), pages 275-287, November.
    2. Zirogiannis, Nikolaos & Simon, Daniel H. & Hollingsworth, Alex J., 2020. "Estimating co-pollutant benefits from climate change policies in the electricity sector: A regression approach," Energy Economics, Elsevier, vol. 90(C).
    3. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    4. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    5. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    6. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    7. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    8. Filippo Natoli, 2023. "The macroeconomic effects of temperature surprise shocks," Temi di discussione (Economic working papers) 1407, Bank of Italy, Economic Research and International Relations Area.
    9. Craig, Christopher A., 2016. "Energy consumption, energy efficiency, and consumer perceptions: A case study for the Southeast United States," Applied Energy, Elsevier, vol. 165(C), pages 660-669.
    10. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
    11. Craig, Christopher A. & Feng, Song, 2016. "An examination of electricity generation by utility organizations in the Southeast United States," Energy, Elsevier, vol. 116(P1), pages 601-608.
    12. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    13. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    14. Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
    15. Natoli, Filippo, 2022. "Temperature surprise shocks," MPRA Paper 112568, University Library of Munich, Germany.
    16. Roman Tylżanowski & Katarzyna Kazojć & Ireneusz Miciuła, 2023. "Exploring the Link between Energy Efficiency and the Environmental Dimension of Corporate Social Responsibility: A Case Study of International Companies in Poland," Energies, MDPI, vol. 16(16), pages 1-18, August.
    17. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    18. Zheng, Yuanfan & Weng, Qihao, 2019. "Modeling the effect of climate change on building energy demand in Los Angeles county by using a GIS-based high spatial- and temporal-resolution approach," Energy, Elsevier, vol. 176(C), pages 641-655.
    19. Craig, Christopher A. & Feng, Song, 2017. "Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach," Applied Energy, Elsevier, vol. 185(P1), pages 779-790.
    20. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02873-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.