IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp186-195.html
   My bibliography  Save this article

Inducing truthful revelation of generator reliability

Author

Listed:
  • Devine, Mel T.
  • Lynch, Muireann Á.

Abstract

Liberalised electricity markets often include a capacity remuneration mechanism to allow generation firms recover their fixed costs. Various de-rating factors and/or penalties have been incorporated into such mechanisms in order to reward the unit based on the contribution they make to system security, which in turn depends on the unit's reliability. However, this reliability is known to the firm but not to the regulator. We adopt a mechanism design approach for capacity payments based on a declaration by the firm of their reliability. The mechanism scales payments and penalties according to this declared reliability such that the firm's profit-maximising strategy is to truthfully reveal its reliability. A stochastic mixed complementarity problem (MCP) is used to model the interactions between the firms, and we apply this methodology to a test system using Irish electricity market data. Truth-telling is induced, increasing the efficiency of capacity payments while eliminating the requirement for the regulator to allocate resources to discovering reliability.

Suggested Citation

  • Devine, Mel T. & Lynch, Muireann Á., 2017. "Inducing truthful revelation of generator reliability," Energy Economics, Elsevier, vol. 64(C), pages 186-195.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:186-195
    DOI: 10.1016/j.eneco.2017.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831730083X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Cosmo, Valeria & Hyland, Marie, 2013. "Carbon tax scenarios and their effects on the Irish energy sector," Energy Policy, Elsevier, vol. 59(C), pages 404-414.
    2. Myerson, Roger B, 1979. "Incentive Compatibility and the Bargaining Problem," Econometrica, Econometric Society, vol. 47(1), pages 61-73, January.
    3. Eric Maskin, 1999. "Nash Equilibrium and Welfare Optimality," Review of Economic Studies, Oxford University Press, vol. 66(1), pages 23-38.
    4. Silva, Carlos & Wollenberg, Bruce & Zheng, Charles Zhoucheng, 2001. "Application of Mechanism Design to Electric Power Markets," Staff General Research Papers Archive 12686, Iowa State University, Department of Economics.
    5. Myerson, Roger B., 1982. "Optimal coordination mechanisms in generalized principal-agent problems," Journal of Mathematical Economics, Elsevier, vol. 10(1), pages 67-81, June.
    6. Haikel Khalfallah, 2011. "A Game theoretic model for generation capacity adequacy: Comparison between investment incentive mechanisms in electricity markets," Post-Print halshs-00743195, HAL.
    7. Muireann A. Lynch and Mel T. Devine, 2017. "Investment vs. Refurbishment: Examining Capacity Payment Mechanisms Using Stochastic Mixed Complementarity Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Joseph Bowring, 2013. "Capacity Markets in PJM," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    9. Peter Cramton & Axel Ockenfels, 2012. "Economics and Design of Capacity Markets for the Power Sector," Papers of Peter Cramton 12cocap, University of Maryland, Department of Economics - Peter Cramton, revised 2012.
    10. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    11. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    12. Cramton, Peter & Stoft, Steven, 2008. "Forward reliability markets: Less risk, less market power, more efficiency," Utilities Policy, Elsevier, vol. 16(3), pages 194-201, September.
    13. Zou, Xiaoyan, 2009. "Double-sided auction mechanism design in electricity based on maximizing social welfare," Energy Policy, Elsevier, vol. 37(11), pages 4231-4239, November.
    14. Myerson, Roger B, 1986. "Multistage Games with Communication," Econometrica, Econometric Society, vol. 54(2), pages 323-358, March.
    15. Zou, Peng & Chen, Qixin & Xia, Qing & He, Chang & Kang, Chongqing, 2015. "Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach," Applied Energy, Elsevier, vol. 158(C), pages 508-518.
    16. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    17. Hobbs, Benjamin F. & Rothkopf, Michael H. & Hyde, Laurel C. & O'Neill, Richard P., 2000. "Evaluation of a Truthful Revelation Auction in the Context of Energy Markets with Nonconcave Benefits," Journal of Regulatory Economics, Springer, vol. 18(1), pages 5-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Oliveira, Fernando & William-Rioux, Bertrand & Pierru, Axel, 2023. "Capacity expansion in liberalized electricity markets with locational pricing and renewable energy investments," Energy Economics, Elsevier, vol. 127(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lynch, Muireann Á. & Devine, Mel, 2015. "Investment vs. Refurbishment: Examining Capacity Payment Mechanisms Using Mixed Complementarity Problems With Endogenous Probability," Papers WP507, Economic and Social Research Institute (ESRI).
    2. Muireann A. Lynch and Mel T. Devine, 2017. "Investment vs. Refurbishment: Examining Capacity Payment Mechanisms Using Stochastic Mixed Complementarity Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Devine, Mel & Lynch, Muireann Á., 2015. "A Menu Approach to Revealing Generator Reliability using a Stochastic Bilevel Mathematical Program," Papers WP518, Economic and Social Research Institute (ESRI).
    4. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).
    5. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Di Cosmo, Valeria & Lynch, Muireann Á., 2016. "Competition and the single electricity market: Which lessons for Ireland?," Utilities Policy, Elsevier, vol. 41(C), pages 40-47.
    7. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    8. Zou, Peng & Chen, Qixin & Xia, Qing & He, Chang & Kang, Chongqing, 2015. "Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach," Applied Energy, Elsevier, vol. 158(C), pages 508-518.
    9. Bester, Helmut & Krähmer, Daniel, 2012. "Exit options in incomplete contracts with asymmetric information," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1947-1968.
    10. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    11. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    12. Gugler, Klaus & Haxhimusa, Adhurim, 2019. "Market integration and technology mix: Evidence from the German and French electricity markets," Energy Policy, Elsevier, vol. 126(C), pages 30-46.
    13. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    14. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    15. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    16. Marinov, Eduard, 2008. "Нобеловата Награда За Икономика За Икономика 2007: Теорията За Икономическите Механизми [The Nobel Price for Economics 2007: The Design of Economic Institutions]," MPRA Paper 60294, University Library of Munich, Germany.
    17. Erik Gawel & Alexandra Purkus & Klaas Korte & Paul Lehmann, 2013. "Förderung der Markt- und Systemintegration erneuerbarer Energien: Perspektiven einer instrumentellen Weiterentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 82(3), pages 123-136.
    18. Doepke, Matthias & Townsend, Robert M., 2006. "Dynamic mechanism design with hidden income and hidden actions," Journal of Economic Theory, Elsevier, vol. 126(1), pages 235-285, January.
    19. Greve, Thomas & Teng, Fei & Pollitt, Michael G. & Strbac, Goran, 2018. "A system operator’s utility function for the frequency response market," Applied Energy, Elsevier, vol. 231(C), pages 562-569.
    20. Chen, Bo & Hall, Nicholas G., 2021. "Incentive schemes for resolving Parkinson’s Law in project management," European Journal of Operational Research, Elsevier, vol. 288(2), pages 666-681.

    More about this item

    Keywords

    Capacity payments; Reliability; Mechanism design; Mixed complementarity problem;
    All these keywords.

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:186-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.